Menu Close

if-I-0-pi-2-sin-x-sin-x-cos-x-dx-0-pi-2-cos-x-sin-x-cos-x-dx-then-I-




Question Number 100216 by Rio Michael last updated on 25/Jun/20
if I = ∫_0 ^(π/2) ((sin x)/(sin x + cos x))dx = ∫_0 ^(π/2) ((cos x)/(sin x +cos x))dx   then I = ??
ifI=0π2sinxsinx+cosxdx=0π2cosxsinx+cosxdxthenI=??
Commented by Dwaipayan Shikari last updated on 25/Jun/20
(π/4)   (I think it should be)
π4(Ithinkitshouldbe)
Commented by Dwaipayan Shikari last updated on 25/Jun/20
∫_0 ^(π/2) ((sinx)/(sinx+cosx))dx=∫_0 ^(π/2) ((sin((π/2)−x))/(sin((π/2)−x)+cos((π/2)−x)))dx=∫_0 ^(π/2) ((cosx)/(sinx+cosx))dx=I     so,  2I=∫_0 ^(π/2) ((sinx+cosx)/(sinx+cosx))dx=(π/2)  So,     I=(π/4)
0π2sinxsinx+cosxdx=0π2sin(π2x)sin(π2x)+cos(π2x)dx=0π2cosxsinx+cosxdx=Iso,2I=0π2sinx+cosxsinx+cosxdx=π2So,I=π4
Answered by Ar Brandon last updated on 25/Jun/20
 { ((I=∫_0 ^(π/2) ((sinx)/(sinx+cosx))dx..........(1))),((I=∫_0 ^(π/2) ((cosx)/(sinx+cosx))dx...........(2))) :}⇒I+I=∫_0 ^(π/2) ((sinx+cosx)/(sinx+cosx))dx  ⇒2I=∫_0 ^(π/2) dx=(π/2)⇒I=(π/4)
{I=0π2sinxsinx+cosxdx.(1)I=0π2cosxsinx+cosxdx..(2)I+I=0π2sinx+cosxsinx+cosxdx2I=0π2dx=π2I=π4
Commented by Coronavirus last updated on 25/Jun/20
clean
clean
Commented by Ar Brandon last updated on 25/Jun/20
Ouais
Commented by Rio Michael last updated on 26/Jun/20
thank you′ll
thankyoull

Leave a Reply

Your email address will not be published. Required fields are marked *