Menu Close

If-I-1-2-0-t-n-e-t-dt-360-Find-n-




Question Number 46465 by rahul 19 last updated on 26/Oct/18
If I=(1/2) ∫_0 ^∞ t^n e^(−t) dt  = 360.  Find n?
$${If}\:{I}=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} {t}^{{n}} {e}^{−{t}} {dt}\:\:=\:\mathrm{360}. \\ $$$${Find}\:{n}? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Oct/18
gamma function  ∫_0 ^∞ e^(−t) t^(n−1) dt=⌈(n)  when ⌈(n+1)=n⌈(n)=n!    your problem is  (1/2)∫_0 ^∞ e^(−t) t^(n+1−1)  dt  (1/2)×⌈(n+1)=360  n!=360×2=720=6!  so n=6
$${gamma}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {t}^{{n}−\mathrm{1}} {dt}=\lceil\left({n}\right) \\ $$$${when}\:\lceil\left({n}+\mathrm{1}\right)={n}\lceil\left({n}\right)={n}! \\ $$$$ \\ $$$${your}\:{problem}\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {t}^{{n}+\mathrm{1}−\mathrm{1}} \:{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\lceil\left({n}+\mathrm{1}\right)=\mathrm{360} \\ $$$${n}!=\mathrm{360}×\mathrm{2}=\mathrm{720}=\mathrm{6}! \\ $$$${so}\:{n}=\mathrm{6} \\ $$
Commented by rahul 19 last updated on 27/Oct/18
thanks sir! ����

Leave a Reply

Your email address will not be published. Required fields are marked *