If-I-k-1-98-k-k-1-k-1-x-x-1-dx-then-1-I-gt-49-50-2-I-lt-49-50-3-I-lt-log-e-99-4-I-gt-log-e-99- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 25049 by Tinkutara last updated on 02/Dec/17 IfI=∑98k=1∫k+1kk+1x(x+1)dx,then(1)I>4950(2)I<4950(3)I<loge99(4)I>loge99 Commented by ajfour last updated on 02/Dec/17 (1),(3). Answered by ajfour last updated on 08/Dec/17 LetJk=∫kk+1k+1x(x+1)dxJk=(k+1)∫kk+1(1x−1x+1)dx=(k+1)ln(xx+1)∣kk+1=(k+1)ln[(k+1)2k(k+2)]=2(k+1)[ln(k+1)−lnk−ln(k+2)]=[2(k+1)ln(k+1)−klnk−(k+2)ln(k+2)]+[−lnk+ln(k+2)]I=∑98k=1Jk=2∑99k=2klnk−∑98k=1klnk−∑100k=3klnk−∑98k=1lnk+∑100k=3lnktermsfromk=3tok=98entirelycancelout,soI=4ln2+2×99ln99−2ln2−99ln99−100ln100−ln2+ln99+ln100I=ln2+99ln(99100)+ln99=ln99+99ln(1−1100)+ln2≈ln99−0.99+0.3So4950<I<loge99. Commented by Tinkutara last updated on 03/Dec/17 IappreciatethisSir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-1-2x-1-1-2x-1-2x-1-1-2x-1-Next Next post: Question-156123 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.