Menu Close

If-I-k-1-98-k-k-1-k-1-x-x-1-dx-then-1-I-gt-49-50-2-I-lt-49-50-3-I-lt-log-e-99-4-I-gt-log-e-99-




Question Number 25049 by Tinkutara last updated on 02/Dec/17
If I = Σ_(k=1) ^(98) ∫_k ^(k+1) ((k + 1)/(x(x + 1)))dx, then  (1) I > ((49)/(50))  (2) I < ((49)/(50))  (3) I < log_e 99  (4) I > log_e 99
IfI=98k=1k+1kk+1x(x+1)dx,then(1)I>4950(2)I<4950(3)I<loge99(4)I>loge99
Commented by ajfour last updated on 02/Dec/17
(1), (3) .
(1),(3).
Answered by ajfour last updated on 08/Dec/17
Let    J_k =∫_k ^(  k+1 ) ((k+1)/(x(x+1)))dx  J_k =(k+1)∫_k ^(  k+1 ) ((1/x)−(1/(x+1)))dx         =(k+1)ln ((x/(x+1)))∣_k ^(k+1)        =(k+1)ln [(((k+1)^2 )/(k(k+2)))]   =2(k+1)[ln (k+1)−ln k−ln (k+2)]  =[2(k+1)ln (k+1)−kln k     −(k+2)ln (k+2)]+[−ln k+ln (k+2)]  I=Σ_(k=1) ^(98) J_k =2Σ_(k=2) ^(99) kln k−Σ_(k=1) ^(98) kln k           −Σ_(k=3) ^(100) kln k−Σ_(k=1) ^(98) ln k+Σ_(k=3) ^(100) ln k  terms from k=3 to k=98  entirely cancel out, so    I=4ln 2+2×99ln 99−2ln 2    −99ln 99−100ln 100−ln 2      +ln 99+ln 100    I =ln 2+99ln (((99)/(100)))+ln 99       = ln 99+99ln (1−(1/(100)))+ln 2          ≈ ln 99−0.99+0.3   So          ((49)/(50)) < I < log _e 99 .
LetJk=kk+1k+1x(x+1)dxJk=(k+1)kk+1(1x1x+1)dx=(k+1)ln(xx+1)kk+1=(k+1)ln[(k+1)2k(k+2)]=2(k+1)[ln(k+1)lnkln(k+2)]=[2(k+1)ln(k+1)klnk(k+2)ln(k+2)]+[lnk+ln(k+2)]I=98k=1Jk=299k=2klnk98k=1klnk100k=3klnk98k=1lnk+100k=3lnktermsfromk=3tok=98entirelycancelout,soI=4ln2+2×99ln992ln299ln99100ln100ln2+ln99+ln100I=ln2+99ln(99100)+ln99=ln99+99ln(11100)+ln2ln990.99+0.3So4950<I<loge99.
Commented by Tinkutara last updated on 03/Dec/17
I appreciate this Sir.
IappreciatethisSir.

Leave a Reply

Your email address will not be published. Required fields are marked *