Menu Close

If-I-n-cos-nx-cos-x-dx-then-1-n-




Question Number 152112 by peter frank last updated on 25/Aug/21
If I_n =∫((cos nx)/(cos x))dx   then 1_n =?
$$\mathrm{If}\:\mathrm{I}_{\mathrm{n}} =\int\frac{\mathrm{cos}\:\mathrm{nx}}{\mathrm{cos}\:\mathrm{x}}\mathrm{dx}\:\:\:\mathrm{then}\:\mathrm{1}_{\mathrm{n}} =? \\ $$
Answered by Olaf_Thorendsen last updated on 26/Aug/21
I_n  = ∫((cos(nx))/(cosx)) dx  I_n  = ∫((T_n (cosx))/(cosx)) dx  T_n  : Tchebychev polynomial  T_n (X) =Σ_(0≤2k≤n) C_(2k) ^n (−1)^k X^(n−2k) (1−X^2 )^k   We must distinguish two cases  n even and n odd...
$$\mathrm{I}_{{n}} \:=\:\int\frac{\mathrm{cos}\left({nx}\right)}{\mathrm{cos}{x}}\:{dx} \\ $$$$\mathrm{I}_{{n}} \:=\:\int\frac{{T}_{{n}} \left(\mathrm{cos}{x}\right)}{\mathrm{cos}{x}}\:{dx} \\ $$$${T}_{{n}} \::\:\mathrm{Tchebychev}\:\mathrm{polynomial} \\ $$$${T}_{{n}} \left({X}\right)\:=\underset{\mathrm{0}\leqslant\mathrm{2}{k}\leqslant{n}} {\sum}\mathrm{C}_{\mathrm{2}{k}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} {X}^{{n}−\mathrm{2}{k}} \left(\mathrm{1}−{X}^{\mathrm{2}} \right)^{{k}} \\ $$$$\mathrm{We}\:\mathrm{must}\:\mathrm{distinguish}\:\mathrm{two}\:\mathrm{cases} \\ $$$${n}\:\mathrm{even}\:\mathrm{and}\:{n}\:\mathrm{odd}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *