Menu Close

If-in-a-ABC-cos-A-cos-B-cos-C-3-2-Prove-that-ABC-is-an-equilateral-triangle-




Question Number 15824 by Tinkutara last updated on 18/Jun/17
If in a ΔABC, cos A + cos B + cos C = (3/2) .  Prove that ΔABC is an equilateral  triangle.
IfinaΔABC,cosA+cosB+cosC=32.ProvethatΔABCisanequilateraltriangle.
Answered by mrW1 last updated on 14/Jun/17
C=180−(A+B)  cos C=−cos (A+B)  S=cos A + cos B + cos C =cos A + cos B − cos (A+B)  let x=A, y=B  S=cos x+cos y−cos (x+y)  (∂S/∂x)=−sin x+sin (x+y)=0  ⇒sin x−sin (x+y)=0     ...(i)  (∂S/∂y)=−sin y+sin (x+y)=0  ⇒sin y−sin (x+y)=0    ...(ii)    from (i) and (ii)  sin x=sin y  ⇒x=y  sin 2x+sin x=0  sin x (1−2cos x)=0  ⇒cos x=(1/2)  x=y=(π/3)  S_(max) =(1/2)+(1/2)−(−(1/2))=(3/2)  S≤(3/2)  only for x=y=z=(π/3), S=S_(max) =(3/2)  ⇒the only solution for cos A + cos B + cos C = (3/2)  is x=y=z=(π/3), i.e. ΔABC is equilateral.
C=180(A+B)cosC=cos(A+B)S=cosA+cosB+cosC=cosA+cosBcos(A+B)letx=A,y=BS=cosx+cosycos(x+y)Sx=sinx+sin(x+y)=0sinxsin(x+y)=0(i)Sy=siny+sin(x+y)=0sinysin(x+y)=0(ii)from(i)and(ii)sinx=sinyx=ysin2x+sinx=0sinx(12cosx)=0cosx=12x=y=π3Smax=12+12(12)=32S32onlyforx=y=z=π3,S=Smax=32theonlysolutionforcosA+cosB+cosC=32isx=y=z=π3,i.e.ΔABCisequilateral.
Commented by Tinkutara last updated on 14/Jun/17
Thanks Sir!
ThanksSir!
Commented by mrW1 last updated on 14/Jun/17
from eqn. (i) and (ii) ⇒x=y
fromeqn.(i)and(ii)x=y
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Jun/17
cosA+cosB+cosC=2cos((A+B)/2)cos((A−B)/2)+cos(180−(A+B))=  =2cos((A+B)/2)cos((A−B)/2)−cos(A+B)=  2cos((A+B)/2)cos((A−B)/2)−2cos^2 ((A+B)/2)+1=  2cos((A+B)/2)(cos((A−B)/2)−cos((A+B)/2))+1=  2cos(90−(C/2))(sin(A/2)sin(B/2))+1=  =4sin(A/2)sin(B/2)sin(C/2)+1  ⇒4sin(A/2)sin(B/2)sin(C/2)+1=(3/2)⇒  ⇒sin(A/2)sin(B/2)sin(C/2)=(1/8)  sin(A/2)=(√((1−cosA)/2))=(√((1−((b^2 +c^2 −a^2 )/(2bc)))/2))=  =(√((a^2 −(b−c)^2 )/(4bc)))=(√(((a+b−c)(a+c−b))/(4bc)))=  =(√((2(p−c)2(p−b))/(4bc)))=(√(((p−b)(p−c))/(bc)))  ⇒(√(((p−b)(p−c))/(bc))).(√(((p−a)(p−c))/(ac))).(√(((p−a)(p−b))/(ab)))=(1/8)  ⇒(((p−a)(p−b)(p−c))/(abc))=(1/8)⇒(S^2 /(p.abc))=(1/8)  ⇒(S/p).(S/(abc))=(1/8)⇒r.(1/(4R))=(1/8)⇒R=2r .  note:  in any triangle ABC:  1)S=p.r   (r=radius of incircle of ABC)  2)abc=4R.S (R=rsdius of outcircle of ABC)  3) d^2 =R^2 −2r.R   (Euler′s rule,d =distance  between centers of (in) and )out( circles)  only in equilateral triangle ,centers of  (in) and  )out(  circles are the same point.  i.e : d=0⇒  R=2r .  so this triangle is equilateral.
cosA+cosB+cosC=2cosA+B2cosAB2+cos(180(A+B))==2cosA+B2cosAB2cos(A+B)=2cosA+B2cosAB22cos2A+B2+1=2cosA+B2(cosAB2cosA+B2)+1=2cos(90C2)(sinA2sinB2)+1==4sinA2sinB2sinC2+14sinA2sinB2sinC2+1=32sinA2sinB2sinC2=18sinA2=1cosA2=1b2+c2a22bc2==a2(bc)24bc=(a+bc)(a+cb)4bc==2(pc)2(pb)4bc=(pb)(pc)bc(pb)(pc)bc.(pa)(pc)ac.(pa)(pb)ab=18(pa)(pb)(pc)abc=18S2p.abc=18Sp.Sabc=18r.14R=18R=2r.note:inanytriangleABC:1)S=p.r(r=radiusofincircleofABC)2)abc=4R.S(R=rsdiusofoutcircleofABC)3)d2=R22r.R(Eulersrule,d=distancebetweencentersof(in)and)out(circles)onlyinequilateraltriangle,centersof(in)and)out(circlesarethesamepoint.i.e:d=0R=2r.sothistriangleisequilateral.
Commented by Tinkutara last updated on 15/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *