Menu Close

If-in-a-ABC-tan-A-2-tan-B-2-and-tan-C-2-are-in-HP-then-the-minimum-value-of-cot-B-2-is-greater-than-1-2-3-2-3-2-3-3-4-1-3-




Question Number 20785 by Tinkutara last updated on 02/Sep/17
If in a ΔABC, tan(A/2), tan(B/2) and tan(C/2)  are in HP, then the minimum value of  cot(B/2) is greater than  (1) 2(√3)  (2) ((√3)/2)  (3) (√3)  (4) (1/( (√3)))
IfinaΔABC,tanA2,tanB2andtanC2areinHP,thentheminimumvalueofcotB2isgreaterthan(1)23(2)32(3)3(4)13
Answered by ajfour last updated on 03/Sep/17
let us call    tan (A/2)=x, tan (B/2)=y,  tan (C/2)=z .      given x, y, z are in H.P.  ⇒   y=((2xz)/(x+z))    ......(i)     tan ((A/2)+(B/2)+(C/2))=((Σtan (A/2)−Πtan (A/2))/(1−Σtan (A/2)tan (B/2)))  ⇒   1−Σxy=0  or    y(x+z)+xz=1                      y=((1−xz)/(x+z))     ......(ii)  from (i) and (ii) it follows that       2xz=1−xz     ⇒    xz=(1/3)       we know that A.M. ≥ G.M.       (((x+z)/2))^2  ≥ xz   ......(iii)     y= ((2xz)/(x+z))     [eq.(i)]  and xz=1/3  ⇒  x+z=(2/(3y)) ; using this in (iii)         ((1/(3y)))^2  ≥(1/3)    ⇒   (1/y) ≥ (√3)   ⇒    cot (B/2) ≥ (√3) .
letuscalltanA2=x,tanB2=y,tanC2=z.givenx,y,zareinH.P.y=2xzx+z(i)tan(A2+B2+C2)=ΣtanA2ΠtanA21ΣtanA2tanB21Σxy=0ory(x+z)+xz=1y=1xzx+z(ii)from(i)and(ii)itfollowsthat2xz=1xzxz=13weknowthatA.M.G.M.(x+z2)2xz(iii)y=2xzx+z[eq.(i)]andxz=1/3x+z=23y;usingthisin(iii)(13y)2131y3cotB23.
Commented by Tinkutara last updated on 03/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *