Menu Close

If-in-ABC-m-BAC-gt-90-then-cosA-cosB-cosC-F-aR-




Question Number 172214 by Shrinava last updated on 24/Jun/22
If  in  △ABC , m(∢BAC)>90°  then:  cosA + cosB cosC = (F/(aR))
$$\mathrm{If}\:\:\mathrm{in}\:\:\bigtriangleup\mathrm{ABC}\:,\:\mathrm{m}\left(\sphericalangle\mathrm{BAC}\right)>\mathrm{90}°\:\:\mathrm{then}: \\ $$$$\mathrm{cosA}\:+\:\mathrm{cosB}\:\mathrm{cosC}\:=\:\frac{\mathrm{F}}{\mathrm{aR}} \\ $$
Commented by mr W last updated on 24/Jun/22
please check! maybe you meant  cosA + cosB cosC = ((aR)/F)  with F=area of triangle?
$${please}\:{check}!\:{maybe}\:{you}\:{meant} \\ $$$$\mathrm{cosA}\:+\:\mathrm{cosB}\:\mathrm{cosC}\:=\:\frac{{aR}}{{F}} \\ $$$${with}\:{F}={area}\:{of}\:{triangle}? \\ $$
Commented by Shrinava last updated on 24/Jun/22
Yes-yes dear professor
$$\mathrm{Yes}-\mathrm{yes}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Answered by mr W last updated on 24/Jun/22
R=((abc)/(4F))  (a/(sin A))=(b/(sin B))=(c/(sin C))=2R    cos A=cos (π−(B+C))  =−cos (B+C)  =−cos B cos C+sin B sin C    cosA + cosB cosC  =sin B sin C  =((2R)/b)×((2R)/c)  =((4R^2 )/(bc))  =((4R)/(bc))×((abc)/(4F))  =((aR)/F) ✓
$${R}=\frac{{abc}}{\mathrm{4}{F}} \\ $$$$\frac{{a}}{\mathrm{sin}\:{A}}=\frac{{b}}{\mathrm{sin}\:{B}}=\frac{{c}}{\mathrm{sin}\:{C}}=\mathrm{2}{R} \\ $$$$ \\ $$$$\mathrm{cos}\:{A}=\mathrm{cos}\:\left(\pi−\left({B}+{C}\right)\right) \\ $$$$=−\mathrm{cos}\:\left({B}+{C}\right) \\ $$$$=−\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}+\mathrm{sin}\:{B}\:\mathrm{sin}\:{C} \\ $$$$ \\ $$$$\mathrm{cosA}\:+\:\mathrm{cosB}\:\mathrm{cosC} \\ $$$$=\mathrm{sin}\:{B}\:\mathrm{sin}\:{C} \\ $$$$=\frac{\mathrm{2}{R}}{{b}}×\frac{\mathrm{2}{R}}{{c}} \\ $$$$=\frac{\mathrm{4}{R}^{\mathrm{2}} }{{bc}} \\ $$$$=\frac{\mathrm{4}{R}}{{bc}}×\frac{{abc}}{\mathrm{4}{F}} \\ $$$$=\frac{{aR}}{{F}}\:\checkmark \\ $$
Commented by Sotoberry last updated on 24/Jun/22
thankyou so much sir
$${thankyou}\:{so}\:{much}\:{sir} \\ $$
Commented by Shrinava last updated on 25/Jun/22
Cool dear professor thank you
$$\mathrm{Cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *