Menu Close

If-in-ABC-r-1-r-2-r-3-r-prove-that-triangle-is-right-angled-




Question Number 16273 by Tinkutara last updated on 20/Jun/17
If in ΔABC r_1  = r_2  + r_3  + r, prove  that triangle is right angled.
IfinΔABCr1=r2+r3+r,provethattriangleisrightangled.
Commented by mrW1 last updated on 20/Jun/17
what is r,r_1 ,...?
whatisr,r1,?
Commented by Tinkutara last updated on 20/Jun/17
r is the inradius of ΔABC.  r_1 , r_2  and r_3  are the exradii of ΔABC  opposite to angles A, B and C  respectively.
ristheinradiusofΔABC.r1,r2andr3aretheexradiiofΔABCoppositetoanglesA,BandCrespectively.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17
p.tg(A/2)=p.tg(B/2)+p.tg(C/2)+(S/p)  ⇒tg(A/2)=tg(B/2)+tg(C/2)+(S/p^2 )  tg(A/2).tg(B/2).tg(C/2)=(S/p^2 )  ⇒tg(A/2)=tg(B/2)+tg(C/2)+tg(A/2).tg(B/2).tg(C/2)  ⇒tg(A/2)(1−tg(B/2).tg(C/2))=tg(B/2)+tg(C/2)  ⇒tg(A/2)=((tg(B/2)+tg(C/2))/(1−tg(B/2).tg(C/2)))=tg((B/2)+(C/2))⇒  (A/2)=((B+C)/2)⇒A=B+C=180−A⇒A=90^•  .■
p.tgA2=p.tgB2+p.tgC2+SptgA2=tgB2+tgC2+Sp2tgA2.tgB2.tgC2=Sp2tgA2=tgB2+tgC2+tgA2.tgB2.tgC2tgA2(1tgB2.tgC2)=tgB2+tgC2tgA2=tgB2+tgC21tgB2.tgC2=tg(B2+C2)A2=B+C2A=B+C=180AA=90.◼
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
ThanksSir!
Answered by ajfour last updated on 20/Jun/17
r_1 =(Δ/(s−a))   r_2 +r_3 +r=(Δ/(s−b))+(Δ/(s−c))+(Δ/s)  when above r_1 =r_2 +r_3 +r   (1/(s−a))=(1/(s−b))+(1/(s−c))+(1/s)   (1/(s−a))−(1/s)=(1/(s−b))+(1/(s−c))  (a/(s(s−a)))=((2s−(b+c))/((s−b)(s−c)))   (a/(s(s−a)))=(a/((s−b)(s−c)))  or    (s−b)(s−c)=s(s−a)         bc−s(b+c)=−as         bc=s(b+c−a)         bc=(((a+b+c))/2)(b+c−a)        2bc=(b+c+a)(b+c−a)   2bc=b^2 +bc−ab+bc+c^2 −ac+ab                                                  +ac−a^2     ⇒   a^2 =b^2 +c^2  .
r1=Δsar2+r3+r=Δsb+Δsc+Δswhenabover1=r2+r3+r1sa=1sb+1sc+1s1sa1s=1sb+1scas(sa)=2s(b+c)(sb)(sc)as(sa)=a(sb)(sc)or(sb)(sc)=s(sa)bcs(b+c)=asbc=s(b+ca)bc=(a+b+c)2(b+ca)2bc=(b+c+a)(b+ca)2bc=b2+bcab+bc+c2ac+ab+aca2a2=b2+c2.
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
ThanksSir!
Answered by mrW1 last updated on 20/Jun/17
with r_1  = r_2  + r_3  + r we have  (Δ/(s−a))=(Δ/(s−b))+(Δ/(s−c))+(Δ/s)  (1/(s−a))−(1/s)=(1/(s−b))+(1/(s−c))  (a/(s(s−a)))=((2s−b−c)/((s−b)(s−c)))  (a/(s(s−a)))=(a/((s−b)(s−c)))  ⇒s(s−a)=(s−b)(s−c)  sa−s(b+c)+bc=0  s(a−b−c)+bc=0  (a+b+c)(a−b−c)+2bc=0  a^2 −(b+c)^2 +2bc=0  a^2 −b−c^2 −2bc+2bc=0  ⇒a^2 =b+c^2   ⇒triangle is right angled!
withr1=r2+r3+rwehaveΔsa=Δsb+Δsc+Δs1sa1s=1sb+1scas(sa)=2sbc(sb)(sc)as(sa)=a(sb)(sc)s(sa)=(sb)(sc)sas(b+c)+bc=0s(abc)+bc=0(a+b+c)(abc)+2bc=0a2(b+c)2+2bc=0a2bc22bc+2bc=0a2=b+c2triangleisrightangled!
Commented by Tinkutara last updated on 20/Jun/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *