Menu Close

if-in-the-expansion-of-1-x-n-the-coefficient-of-x-9-is-the-aritmetic-mean-of-the-coeficients-of-x-8-and-x-10-find-the-possible-value-of-n-where-n-is-a-positive-integer-




Question Number 87175 by john santu last updated on 03/Apr/20
if in the expansion of (1+x)^n  the  coefficient of x^9  is the aritmetic   mean of the coeficients of x^8  and   x^(10) . find the possible value   of n where n is a positive integer
ifintheexpansionof(1+x)nthecoefficientofx9isthearitmeticmeanofthecoeficientsofx8andx10.findthepossiblevalueofnwherenisapositiveinteger
Commented by jagoll last updated on 03/Apr/20
i can try   2 C_9 ^n  = C_8 ^n  + C_(10) ^n   2×((n!)/(9! (n−9)!)) = ((n!)/(8! (n−8)!)) + ((n!)/(10! (n−10)!))  (2/(9(n−9))) = (1/1)+ (1/(10.9.(n−10)(n−9)))  ((20(n−10)−1)/(10.9.(n−9)(n−10))) = 1  20n −201 = 90(n^2 −19n+90)  90n^2 −1690 n + 8301 = 0
icantry2C9n=C8n+C10n2×n!9!(n9)!=n!8!(n8)!+n!10!(n10)!29(n9)=11+110.9.(n10)(n9)20(n10)110.9.(n9)(n10)=120n201=90(n219n+90)90n21690n+8301=0
Commented by john santu last updated on 03/Apr/20
good sir
goodsir
Answered by john santu last updated on 03/Apr/20
2C_9 ^n  = C_8 ^n  + C_(10) ^n   4C_9 ^n  = (C_8 ^n  + C_9 ^n ) + ( C_9 ^n  + C_(10) ^n )   4C_9 ^n  = C_9 ^(n+1)  + C_(10) ^(n+1)  = C_(10) ^(n+2)   ((4n!)/(9! (n−9)!)) = (((n+2)!)/(10! (n−8)!))  4 = ((n^2 +3n+2)/(10(n−8))) ⇒ n^2 −37n +322 = 0  (n−14)(n−23) = 0   n = 14 or n = 23
2C9n=C8n+C10n4C9n=(C8n+C9n)+(C9n+C10n)4C9n=C9n+1+C10n+1=C10n+24n!9!(n9)!=(n+2)!10!(n8)!4=n2+3n+210(n8)n237n+322=0(n14)(n23)=0n=14orn=23
Commented by peter frank last updated on 03/Apr/20
good
good

Leave a Reply

Your email address will not be published. Required fields are marked *