Menu Close

If-in-triangle-ABC-cosB-b-cosC-c-show-that-the-triangle-is-isosceles-




Question Number 46570 by scientist last updated on 28/Oct/18
If in triangle ABC   ((cosB)/b) =((cosC)/c), show that the  triangle is isosceles
$${If}\:{in}\:{triangle}\:{ABC}\:\:\:\frac{{cosB}}{{b}}\:=\frac{{cosC}}{{c}},\:{show}\:{that}\:{the} \\ $$$${triangle}\:{is}\:{isosceles} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Oct/18
((sinA)/a)=((sinB)/b)=((sinC)/c)  ((cosB)/(cosC))=((sinB)/(sinC))=(b/c)  sinBcosC−sinCcosB=0  sin(B−C)=0   so B−C=0  ∠B=∠C   proved
$$\frac{{sinA}}{{a}}=\frac{{sinB}}{{b}}=\frac{{sinC}}{{c}} \\ $$$$\frac{{cosB}}{{cosC}}=\frac{{sinB}}{{sinC}}=\frac{{b}}{{c}} \\ $$$${sinBcosC}−{sinCcosB}=\mathrm{0} \\ $$$${sin}\left({B}−{C}\right)=\mathrm{0}\:\:\:{so}\:{B}−{C}=\mathrm{0} \\ $$$$\angle{B}=\angle{C}\:\:\:{proved} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *