Menu Close

If-is-a-root-of-the-equation-4x-2-2x-1-0-How-do-you-prove-the-other-root-is-4-3-3-




Question Number 113211 by bemath last updated on 11/Sep/20
If α is a root of the equation  4x^2 +2x−1=0 . How do you  prove the other root is  4α^3 −3α ?
Ifαisarootoftheequation4x2+2x1=0.Howdoyouprovetheotherrootis4α33α?
Answered by 1549442205PVT last updated on 11/Sep/20
α is a root of the equation 4x^2 +2x−1=0 (1)  ,so we have 4α^2 +2α−1=0  ⇒4α^3 =α(1−2α)=α−2α^2 .From that  4α^3 −3α=−2α^2 −2α.Replace into(1)  we get  4(2α^2 +2α)^2 −2(2α^2 +2α)−1  =16(α^4 +2α^3 +α^2 )−4α^2 −4α−1  =16α^4 +32α^3 +12α^2 −4α−1  =(4α^2 +2α−1)^2 +16α^3 +16α^2 −2  =16α^3 +16α^2 −2=4α(4α^2 +2α−1)  +8α^2 +4α−2=8α^2 +4α−2  =2(4α^2 +2α−1)=0  This show that 4α^3 −3α is also  other root of the equation  4x^2 +2x−1=0(q.e.d)
αisarootoftheequation4x2+2x1=0(1),sowehave4α2+2α1=04α3=α(12α)=α2α2.Fromthat4α33α=2α22α.Replaceinto(1)weget4(2α2+2α)22(2α2+2α)1=16(α4+2α3+α2)4α24α1=16α4+32α3+12α24α1=(4α2+2α1)2+16α3+16α22=16α3+16α22=4α(4α2+2α1)+8α2+4α2=8α2+4α2=2(4α2+2α1)=0Thisshowthat4α33αisalsootherrootoftheequation4x2+2x1=0(q.e.d)
Answered by $@y@m last updated on 11/Sep/20
4x^2 +2x−1=0  x=((−2±(√(4+16)))/8)  x=((−2±(√(20)))/8)  x=((−2±2(√5))/8)  x=((−1±(√5))/4)  Let α=((−1+(√5))/4), β=((−1−(√5))/4)  Now,  4α^3 −3α=α(4α^2 −3)  =((−1+(√5))/4){4(((−1+(√5))/4))^2 −3}  =((−1+(√5))/4){((5+1−2(√5))/4)−3}  =((−1+(√5))/4){((6−2(√5))/4)−3}  =((−1+(√5))/4){((3−(√5))/2)−3}  =((−1+(√5))/4){((−3−(√5))/2)}  =(1/(32))(3+(√5)−5−3(√5))  =((−2−2(√5))/8)  =((−1−(√5))/4)  =β  Q.E.D.  Remark:  You may assume   β=((−1+(√5))/4), α=((−1−(√5))/4)  and still you can show that 4α^3 −3α=β
4x2+2x1=0x=2±4+168x=2±208x=2±258x=1±54Letα=1+54,β=154Now,4α33α=α(4α23)=1+54{4(1+54)23}=1+54{5+12543}=1+54{62543}=1+54{3523}=1+54{352}=132(3+5535)=2258=154=βQ.E.D.Remark:Youmayassumeβ=1+54,α=154andstillyoucanshowthat4α33α=β
Commented by 1549442205PVT last updated on 12/Sep/20
cos((2π)/5)=(((√5)−1)/4),((−1−(√5))/4)=cos((4π)/5)  =cos(((4π)/5)−2π)=cos((−6π)/5)=cos((6π)/5)  =4cos^3 ((2π)/5)−3cos((2π)/5).Hence,put α=cos((2π)/5)  =(((√5)−1)/4) then 4α^3 −3α=((−1−(√5))/4)
cos2π5=514,154=cos4π5=cos(4π52π)=cos6π5=cos6π5=4cos32π53cos2π5.Hence,putα=cos2π5=514then4α33α=154
Answered by Dwaipayan Shikari last updated on 11/Sep/20
α+β=−(1/2)  αβ=−(1/4)  (α+β)^2 −4αβ=(α−β)^2   (1/4)+1=(α−β)^2 ⇒(α−β)=±((√5)/2)  α=(((√5)−1)/4) or−((((√5)+1)/4))  β=((−(√5)−1)/4) or ((((√5)−1)/4))  4α^3 −3α=−4((((√5)+1)/4))^3 +3((((√5)+1)/4))=(((√5)−1)/4)=β  4α^3 −3α=4((((√5)−1)/4))^3 −3((((√5)−1)/4))=β
α+β=12αβ=14(α+β)24αβ=(αβ)214+1=(αβ)2(αβ)=±52α=514or(5+14)β=514or(514)4α33α=4(5+14)3+3(5+14)=514=β4α33α=4(514)33(514)=β

Leave a Reply

Your email address will not be published. Required fields are marked *