Menu Close

If-k-1-10-cos-kpi-11-2-n-then-n-




Question Number 127835 by bemath last updated on 02/Jan/21
 If  Π_(k=1) ^(10)  cos (((kπ)/(11))) = −2^n  , then n = ?
If10k=1cos(kπ11)=2n,thenn=?
Answered by liberty last updated on 02/Jan/21
 let Y = cos x cos 2x cos 3x cos 4x                    cos 5x cos 6x cos 7x cos 8x                    cos 9x cos 10x ; where x = (π/(11))  ⇒2Ysin x = sin 2x cos 2x cos 3x cos 4x                              cos 5x cos 6x cos 7x cos 8x                             cos 9x cos 10x  ⇒2^2 Ysin x= sin 4x cos 3x cos 4x cos 5x                              cos 6x cos 7x cos 8x cos 9x cos 10x  ⇒2^3 Ysin x = sin 8x cos 3x cos 5x cos 6x                              cos 7x cos 8x cos 9x cos 10x  ⇒2^4 Ysin x=sin 16x cos 3x cos 5x cos 6x                            cos 7x cos 9x cos 10x  note sin 16x=sin (((16π)/(11)))=sin (π+((5π)/(11)))=−sin 5x  ⇒2^4 Ysin x=−sin 5x cos 3x cos 5x cos 6x                                cos 7x cos 9x cos 10x  ⇒2^5 Ysin x=−sin 10x cos 3x cos 6x cos 7x cos 9x cos 10x  ⇒2^6 Ysin x=−sin 20x cos 3x cos 6x cos 7x cos 9x  note sin 20x=sin (π+((9π)/(11)))=−sin 9x  ⇒2^6 Ysin x=sin 9x cos 3x cos 6x cos 7x cos 9x  ⇒2^7 Ysin x=sin 18x cos 3x cos 6x cos 7x   note sin 18x=sin (π+((7π)/(11)))=−sin 7x  ⇒2^7 Ysin x=−sin 7x cos 3x cos 6x cos 7x  ⇒2^8 Ysin x=−sin 14x cos 3x cos 6x  note sin 14x=sin (π+((3π)/(11)))=−sin 3x  ⇒2^9 Ysin x=sin 6x cos 6x  ⇒2^(10) Ysin x = sin 12x  ∴ Y = ((sin (π+(π/(11))))/(2^(10)  sin ((π/(11))))) = ((−sin ((π/(11))))/(2^(10)  sin ((π/(11)))))    Y = −2^(−10)  , we get n = −10.
letY=cosxcos2xcos3xcos4xcos5xcos6xcos7xcos8xcos9xcos10x;wherex=π112Ysinx=sin2xcos2xcos3xcos4xcos5xcos6xcos7xcos8xcos9xcos10x22Ysinx=sin4xcos3xcos4xcos5xcos6xcos7xcos8xcos9xcos10x23Ysinx=sin8xcos3xcos5xcos6xcos7xcos8xcos9xcos10x24Ysinx=sin16xcos3xcos5xcos6xcos7xcos9xcos10xnotesin16x=sin(16π11)=sin(π+5π11)=sin5x24Ysinx=sin5xcos3xcos5xcos6xcos7xcos9xcos10x25Ysinx=sin10xcos3xcos6xcos7xcos9xcos10x26Ysinx=sin20xcos3xcos6xcos7xcos9xnotesin20x=sin(π+9π11)=sin9x26Ysinx=sin9xcos3xcos6xcos7xcos9x27Ysinx=sin18xcos3xcos6xcos7xnotesin18x=sin(π+7π11)=sin7x27Ysinx=sin7xcos3xcos6xcos7x28Ysinx=sin14xcos3xcos6xnotesin14x=sin(π+3π11)=sin3x29Ysinx=sin6xcos6x210Ysinx=sin12xY=sin(π+π11)210sin(π11)=sin(π11)210sin(π11)Y=210,wegetn=10.
Commented by bemath last updated on 02/Jan/21
greatt...
greatt
Commented by bemath last updated on 02/Jan/21

Leave a Reply

Your email address will not be published. Required fields are marked *