Menu Close

if-k-1-n-u-k-n-2-n-3-determine-lim-n-k-1-n-1-u-k-




Question Number 108705 by mathmax by abdo last updated on 18/Aug/20
if Σ_(k=1) ^n  u_k =n(2^n +3)  determine lim_(n→+∞) Σ_(k=1) ^n  (1/u_k )
ifk=1nuk=n(2n+3)determinelimn+k=1n1uk
Answered by mathmax by abdo last updated on 21/Aug/20
we have u_1  +u_2 +....+u_n =n(2^n +3)  u_1  +u_2  +....+u_n +u_(n+1) =(n+1)(2^(n+1)  +3) ⇒  u_(n+1) =(n+1)2^(n+1) +3n+3−n2^n −3n  =2n 2^n  +2^(n+1) −n2^n  +3 =n 2^n  +2.2^n  +3 =(n+2)2^n  +3 ⇒  u_n =(n+1)2^(n−1)  +3 ⇒v_n =Σ_(k=1) ^n  (1/u_k ) =Σ_(k=1) ^n  (1/((k+1)2^(k−1)  +3))  1≤k≤n ⇒2≤k+1≤n+1 and 1≤2^(k−1) ≤2^(n−1)  ⇒2≤(k+1)2^(k−1) ≤n+1 +2^(n−1)  ⇒  5≤)k+1)2^(k−1)  +3≤n+4 +2^(n−1)  ⇒(1/(n+4+2^(n−1) ))≤(1/((...)))≤(1/5)  (1/(n+4 +2^(n−1) )) =(1/(2^(n−1) {((n+4)/2^(n−1) ) +1}))∼(1/2^(n−1) )(1−((n+4)/2^(n−1) ))=(1/2^(n−1) )−((n+4)/4^(n−1) )  ⇒Σ(1/(n+4+2^(n−1) )) converges  ⇒Σ v_n  cv   rest to find limit....  be continued....
wehaveu1+u2+.+un=n(2n+3)u1+u2+.+un+un+1=(n+1)(2n+1+3)un+1=(n+1)2n+1+3n+3n2n3n=2n2n+2n+1n2n+3=n2n+2.2n+3=(n+2)2n+3un=(n+1)2n1+3vn=k=1n1uk=k=1n1(k+1)2k1+31kn2k+1n+1and12k12n12(k+1)2k1n+1+2n15)k+1)2k1+3n+4+2n11n+4+2n11()151n+4+2n1=12n1{n+42n1+1}12n1(1n+42n1)=12n1n+44n1Σ1n+4+2n1convergesΣvncvresttofindlimit.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *