Menu Close

If-k-is-an-integer-which-satisfies-2sin-2-10cos-2-2-7-2k-then-k-A-0-1-2-3-B-1-0-1-2-3-C-2-1-0-1-2-3-D-3-2-1-0-




Question Number 117791 by ZiYangLee last updated on 13/Oct/20
If k is an integer which satisfies   2sin^2 θ+10cos^2 (θ/2)=7−2k, then k∈?  A.{0,1,2,3}   B.{−1,0,1,2,3}  C.{(−2,−1,0,1,2,3}  D.{−3,−2,−1,0}
Ifkisanintegerwhichsatisfies2sin2θ+10cos2θ2=72k,thenk?A.{0,1,2,3}B.{1,0,1,2,3}C.{(2,1,0,1,2,3}D.{3,2,1,0}
Answered by floor(10²Eta[1]) last updated on 13/Oct/20
2(1−cos^2 θ)+10(((1+cosθ)/2))=7−2k  2−2cos^2 θ+5+5cosθ=7−2k  2cos^2 θ−5cosθ−2k=0  cosθ=((5±(√(25+16k)))/4)  −1≤((5±(√(25+16k)))/4)≤1  −9≤±(√(25+16k))≤−1  ⇒−9≤−(√(25+16k))≤−1  9≥(√(25+16k))≥1  81≥25+16k≥1  3.5≥k≥−1.5  Ans: B
2(1cos2θ)+10(1+cosθ2)=72k22cos2θ+5+5cosθ=72k2cos2θ5cosθ2k=0cosθ=5±25+16k415±25+16k419±25+16k1925+16k1925+16k18125+16k13.5k1.5Ans:B
Answered by TANMAY PANACEA last updated on 13/Oct/20
cos^2 (θ/2)=a  2(2sin(θ/2)cos(θ/2))^2 +10cos^2 (θ/2)  8(1−cos^2 (θ/2))cos^2 (θ/2)+10cos^2 (θ/2)  8(1−a)a+10a  8a−8a^2 +10a  18a−8a^2   −8a^2 +18a  −8(a^2 −((9a)/4))  −8(a^2 −2×a×(9/8)+((81)/(64))−((81)/(64)))  8×((81)/(64))−8(a−(9/8))^2   ((81)/8)−8(a−(9/8))^2     1≥cos(θ/2)≥−1 but 1≥cos^2 (θ/2)≥0   1≥a≥0  ((81)/8)−8(0−(9/8))^2 =0  ((81)/8)−8(1−(9/8))^2 =((81)/8)−8×(1/(64))=((81−1)/8)=10  now  10≥7−2k≥0  3≥−2k≥−7  −3≤2k≤7  ((−3)/2)≤k≤(7/2)  −1.5≤k≤3.5
cos2θ2=a2(2sinθ2cosθ2)2+10cos2θ28(1cos2θ2)cos2θ2+10cos2θ28(1a)a+10a8a8a2+10a18a8a28a2+18a8(a29a4)8(a22×a×98+81648164)8×81648(a98)28188(a98)21cosθ21but1cos2θ201a08188(098)2=08188(198)2=8188×164=8118=10now1072k032k732k732k721.5k3.5
Answered by 1549442205PVT last updated on 14/Oct/20
2sin^2 θ+10cos^2 (θ/2)=7−2k (1)  ⇔2(sin(θ/2)cos(θ/2))^2 +10cos^2 (θ/2)=7−2k  ⇔2sin^2 (θ/2)cos^2 (θ/2)+10cos^2 (θ/2)=7−k  •If cos^2 x=0 then sin^2 x=1⇒(1)⇔k=2.5∉Z  •If cos^2 x≠0 then divide both sides of  equation(1)by cos^2 x we get  (1)⇔2tan^2 (θ/2)+10=(7−2k)(1+tan^2 (θ/2))  ⇔(5−2k)tan^2 (θ/2)=3+2k⇒k≠2.5  ⇔tan^2 (θ/2)=((3+2k)/(5−2k))≥0⇔−1.5≤k<2.5  k∈Z⇒k∈{−1,0,1,2}⇒Choose B
2sin2θ+10cos2θ2=72k(1)2(sinθ2cosθ2)2+10cos2θ2=72k2sin2θ2cos2θ2+10cos2θ2=7kIfcos2x=0thensin2x=1(1)k=2.5ZIfcos2x0thendividebothsidesofequation(1)bycos2xweget(1)2tan2θ2+10=(72k)(1+tan2θ2)(52k)tan2θ2=3+2kk2.5tan2θ2=3+2k52k01.5k<2.5kZk{1,0,1,2}ChooseB

Leave a Reply

Your email address will not be published. Required fields are marked *