Menu Close

If-k-is-odd-then-show-that-1-k-2-k-3-k-n-k-is-divisible-by-1-2-3-n-for-every-n-N-




Question Number 46460 by Tawa1 last updated on 26/Oct/18
If  k is odd, then show that    1^k  + 2^k  + 3^k  + ... + n^k   is divisible by     1 + 2 + 3 + ... + n,     for every   n ∈ N
$$\mathrm{If}\:\:\mathrm{k}\:\mathrm{is}\:\mathrm{odd},\:\mathrm{then}\:\mathrm{show}\:\mathrm{that}\:\:\:\:\mathrm{1}^{\mathrm{k}} \:+\:\mathrm{2}^{\mathrm{k}} \:+\:\mathrm{3}^{\mathrm{k}} \:+\:…\:+\:\mathrm{n}^{\mathrm{k}} \:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\: \\ $$$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:…\:+\:\mathrm{n},\:\:\:\:\:\mathrm{for}\:\mathrm{every}\:\:\:\mathrm{n}\:\in\:\mathrm{N} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *