Menu Close

if-lim-x-0-ae-x-bsin-x-ce-x-xsin-x-2-what-is-a-b-c-




Question Number 80983 by jagoll last updated on 08/Feb/20
if lim_(x→0) ((ae^x −bsin x+ce^(−x) )/(xsin x)) = 2  what is a+b+c ?
iflimx0aexbsinx+cexxsinx=2whatisa+b+c?
Commented by jagoll last updated on 09/Feb/20
i can′t solved this equation.   what it′s wrong?
icantsolvedthisequation.whatitswrong?
Commented by jagoll last updated on 09/Feb/20
step (1) limit must be (0/0)  ⇒a +c = 0 ⇒c = −a  step(2) lim_(x→0)  ((ae^x −bsin x −ae^(−x) )/(xsin x)) =2  L ^� hopital rule  lim_(x→0)  ((ae^x −bcos x+ae^(−x) )/(sin x+xcos x)) = 2  since denumerator = 0 ,   ⇒2a −b = 0 ⇒b = 2a  L ^� hopital again  lim_(x→0)  ((ae^x +bsin x−ae^(−x) )/(2cos x−xsin x))=2  ⇒ (0/2)=2 ⇒?
step(1)limitmustbe00a+c=0c=astep(2)limx0aexbsinxaexxsinx=2L^hopitalrulelimx0aexbcosx+aexsinx+xcosx=2sincedenumerator=0,2ab=0b=2aL^hopitalagainlimx0aex+bsinxaex2cosxxsinx=202=2?
Commented by abdomathmax last updated on 09/Feb/20
⇒lim_(x→0)   ((ae^x −bsinx +c e^(−x) )/(xsinx))−2=0 ⇒  lim_(x→0)    ((a e^x −bsinx+ce^(−x) −2xsinx)/(xsinx))=0⇒  lim_(x→0) u(x)==lim_(x→0) u^′ (x)=0 and  lim_(x→0) v(x)=lim_(x→0)   v^′ (x)=0 with  u(x)=ae^x −bsinx +ce^(−x) −2xsinx ⇒  u(0)=0 ⇒a +c =0 ⇒c=−a  u^′ (x)=ae^x −bcosx−ce^(−x) −2sinx−2x cosx  u^′ (0)=0 ⇒a−b−c=0 ⇒2a−b=0 ⇒b=2a  ⇒a+b+c =2(b+c)=2(2a−a)=2a  if we get a=1 ⇒a+b+c=2
limx0aexbsinx+cexxsinx2=0limx0aexbsinx+cex2xsinxxsinx=0limx0u(x)==limx0u(x)=0andlimx0v(x)=limx0v(x)=0withu(x)=aexbsinx+cex2xsinxu(0)=0a+c=0c=au(x)=aexbcosxcex2sinx2xcosxu(0)=0abc=02ab=0b=2aa+b+c=2(b+c)=2(2aa)=2aifwegeta=1a+b+c=2
Commented by john santu last updated on 09/Feb/20
you are right sir
youarerightsir
Commented by jagoll last updated on 09/Feb/20
how to get a = 1 ?
howtogeta=1?
Commented by jagoll last updated on 09/Feb/20
if we get a = 1 , it mean for a = 6  a+b+c = 12 .that means the  solution from a+b+c  is not   one.
ifwegeta=1,itmeanfora=6a+b+c=12.thatmeansthesolutionfroma+b+cisnotone.
Commented by mr W last updated on 09/Feb/20
have you checked sir?  i don′t think the answer is correct.  example: a=1,b=2,c=−1.  lim_(x→0) ((e^x −2sin x−e^(−x) )/(xsin x))  =lim_(x→0) ((e^x −2cos x+e^(−x) )/(sin x+x cos x))  =lim_(x→0)  ((e^x +2sin x−e^(−x) )/(2 cos x−x sin x))  =(0/2)=0≠2    my answer is:  there exist no values for a,b, c such  that lim_(x→0) ((ae^x −bsin x+ce^(−x) )/(xsin x))=2.
haveyoucheckedsir?idontthinktheansweriscorrect.example:a=1,b=2,c=1.limx0ex2sinxexxsinx=limx0ex2cosx+exsinx+xcosx=limx0ex+2sinxex2cosxxsinx=02=02myansweris:thereexistnovaluesfora,b,csuchthatlimx0aexbsinx+cexxsinx=2.
Commented by jagoll last updated on 09/Feb/20
yes sir. i think it question not right
yessir.ithinkitquestionnotright

Leave a Reply

Your email address will not be published. Required fields are marked *