Menu Close

If-lim-x-0-cos-m-mx-cos-n-nx-m-2-n-2-mn-x-2-1-find-m-2-n-2-4-mn-




Question Number 168576 by cortano1 last updated on 13/Apr/22
   If lim_(x→0)  ((cos^m (mx)−cos^n (nx))/((m^2 +n^2 +mn)x^2  )) = 1   find ((m^2 +n^2 −4)/(mn)) .
$$\:\:\:{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{{m}} \left({mx}\right)−\mathrm{cos}\:^{{n}} \left({nx}\right)}{\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}\right){x}^{\mathrm{2}} \:}\:=\:\mathrm{1} \\ $$$$\:{find}\:\frac{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}}{{mn}}\:. \\ $$
Commented by blackmamba last updated on 17/Apr/22
 m^2 +n^2 +mn=lim_(x→0)  ((cos^m (mx)−cos^n (nx))/x^2 )   m^2 +n^2 +mn = ((n^3 −m^3 )/2)   ((n^3 −m^3 )/((n−m))) = ((n^3 −m^3 )/2)   (n^3 −m^3 )((1/(n−m))−(1/2))=0    n−m=2⇒n^2 −2mn+m^2  = 4  ⇒ m^2 +n^2 −4= 2mn  ⇒((m^2 +n^2 −4)/(mn)) = 2
$$\:{m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{{m}} \left({mx}\right)−\mathrm{cos}\:^{{n}} \left({nx}\right)}{{x}^{\mathrm{2}} } \\ $$$$\:{m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}\:=\:\frac{{n}^{\mathrm{3}} −{m}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\:\frac{{n}^{\mathrm{3}} −{m}^{\mathrm{3}} }{\left({n}−{m}\right)}\:=\:\frac{{n}^{\mathrm{3}} −{m}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\:\left({n}^{\mathrm{3}} −{m}^{\mathrm{3}} \right)\left(\frac{\mathrm{1}}{{n}−{m}}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\:\:{n}−{m}=\mathrm{2}\Rightarrow{n}^{\mathrm{2}} −\mathrm{2}{mn}+{m}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\Rightarrow\:{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}=\:\mathrm{2}{mn} \\ $$$$\Rightarrow\frac{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}}{{mn}}\:=\:\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *