Menu Close

If-lim-x-0-ln-a-x-ln-a-x-k-lim-x-e-ln-x-1-x-e-1-then-k-




Question Number 128411 by bramlexs22 last updated on 07/Jan/21
 If lim_(x→0) (((ln (a+x)−ln a)/x))+ k lim_(x→e) (((ln x−1)/(x−e)))=1  then k =
Iflimx0(ln(a+x)lnax)+klimxe(lnx1xe)=1thenk=
Answered by Dwaipayan Shikari last updated on 07/Jan/21
lim_(x→0) ((log(1+(x/a)))/x)+(k/e)lim_(x→e) ((log((x/e)))/((x/e)−1))  =((x/a)/x)+(k/e).((log(1+(x/e)−1))/((x/e)−1))⇒(1/a)+(k/e)=1 ⇒k=e(1−(1/a))  lim_(x→0) log(1+x)=x
limx0log(1+xa)x+kelimxelog(xe)xe1=xax+ke.log(1+xe1)xe11a+ke=1k=e(11a)limx0log(1+x)=x
Answered by mr W last updated on 07/Jan/21
(1/(a+0))+k(1/e)=1  ⇒k=(1−(1/a))e
1a+0+k1e=1k=(11a)e
Answered by liberty last updated on 07/Jan/21
L′Hopital   lim_(x→0)  ((1/(a+x))/1) +k lim_(x→e)  ((1/x)/1) = 1    (1/a) +(k/e) = 1 ⇒k = ((ae−e)/a) = (e/a)(a−1)
LHopitallimx01a+x1+klimxe1x1=11a+ke=1k=aeea=ea(a1)

Leave a Reply

Your email address will not be published. Required fields are marked *