Menu Close

If-lim-x-0-ln-a-x-ln-a-x-k-lim-x-e-ln-x-1-x-e-1-then-k-




Question Number 128411 by bramlexs22 last updated on 07/Jan/21
 If lim_(x→0) (((ln (a+x)−ln a)/x))+ k lim_(x→e) (((ln x−1)/(x−e)))=1  then k =
$$\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{ln}\:\left({a}+{x}\right)−\mathrm{ln}\:{a}}{{x}}\right)+\:{k}\:\underset{{x}\rightarrow\mathrm{e}} {\mathrm{lim}}\left(\frac{\mathrm{ln}\:{x}−\mathrm{1}}{{x}−{e}}\right)=\mathrm{1} \\ $$$$\mathrm{then}\:{k}\:=\: \\ $$
Answered by Dwaipayan Shikari last updated on 07/Jan/21
lim_(x→0) ((log(1+(x/a)))/x)+(k/e)lim_(x→e) ((log((x/e)))/((x/e)−1))  =((x/a)/x)+(k/e).((log(1+(x/e)−1))/((x/e)−1))⇒(1/a)+(k/e)=1 ⇒k=e(1−(1/a))  lim_(x→0) log(1+x)=x
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{log}\left(\mathrm{1}+\frac{{x}}{{a}}\right)}{{x}}+\frac{{k}}{{e}}\underset{{x}\rightarrow{e}} {\mathrm{lim}}\frac{{log}\left(\frac{{x}}{{e}}\right)}{\frac{{x}}{{e}}−\mathrm{1}} \\ $$$$=\frac{\frac{{x}}{{a}}}{{x}}+\frac{{k}}{{e}}.\frac{{log}\left(\mathrm{1}+\frac{{x}}{{e}}−\mathrm{1}\right)}{\frac{{x}}{{e}}−\mathrm{1}}\Rightarrow\frac{\mathrm{1}}{{a}}+\frac{{k}}{{e}}=\mathrm{1}\:\Rightarrow{k}={e}\left(\mathrm{1}−\frac{\mathrm{1}}{{a}}\right)\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{log}\left(\mathrm{1}+{x}\right)={x}\: \\ $$
Answered by mr W last updated on 07/Jan/21
(1/(a+0))+k(1/e)=1  ⇒k=(1−(1/a))e
$$\frac{\mathrm{1}}{{a}+\mathrm{0}}+{k}\frac{\mathrm{1}}{{e}}=\mathrm{1} \\ $$$$\Rightarrow{k}=\left(\mathrm{1}−\frac{\mathrm{1}}{{a}}\right){e} \\ $$
Answered by liberty last updated on 07/Jan/21
L′Hopital   lim_(x→0)  ((1/(a+x))/1) +k lim_(x→e)  ((1/x)/1) = 1    (1/a) +(k/e) = 1 ⇒k = ((ae−e)/a) = (e/a)(a−1)
$$\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{{a}+{x}}}{\mathrm{1}}\:+{k}\:\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{{x}}}{\mathrm{1}}\:=\:\mathrm{1}\: \\ $$$$\:\frac{\mathrm{1}}{{a}}\:+\frac{{k}}{{e}}\:=\:\mathrm{1}\:\Rightarrow{k}\:=\:\frac{{ae}−{e}}{{a}}\:=\:\frac{{e}}{{a}}\left({a}−\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *