Menu Close

If-lim-x-1-ax-3-b-1-3-2x-x-2-1-M-then-lim-x-1-ax-3-b-1-3-2-x-2-3x-2-




Question Number 128817 by benjo_mathlover last updated on 10/Jan/21
 If lim_(x→1) ((((ax^3 +b))^(1/3)  −2x)/(x^2 −1)) = M then lim_(x→1)  ((((ax^3 +b))^(1/3) −2)/(x^2 −3x+2)) =?
$$\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{ax}^{\mathrm{3}} +\mathrm{b}}\:−\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:=\:\mathrm{M}\:\mathrm{then}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{ax}^{\mathrm{3}} +\mathrm{b}}−\mathrm{2}}{\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}}\:=? \\ $$
Answered by benjo_mathlover last updated on 10/Jan/21
i use trick mr Liberty    lim_(x→1)  ((((ax^3 +b))^(1/3)  −2x−2+2x)/((x−1)(x−2))) = lim_(x→1)  ((((ax^3 +b))^(1/3) −2x)/(−(x−1))) + lim_(x→1)  ((2(x−1))/((x−1)(x−2)))   = −lim_(x→1)  (((x+1){((ax^3 +b))^(1/3) −2x})/((x^2 −1))) + lim_(x→1)  (2/(x−2))   = −2M−2
$$\mathrm{i}\:\mathrm{use}\:\mathrm{trick}\:\mathrm{mr}\:\mathrm{Liberty}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{ax}^{\mathrm{3}} +\mathrm{b}}\:−\mathrm{2x}−\mathrm{2}+\mathrm{2x}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{ax}^{\mathrm{3}} +\mathrm{b}}−\mathrm{2x}}{−\left(\mathrm{x}−\mathrm{1}\right)}\:+\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{1}\right)}{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)} \\ $$$$\:=\:−\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\left(\mathrm{x}+\mathrm{1}\right)\left\{\sqrt[{\mathrm{3}}]{\mathrm{ax}^{\mathrm{3}} +\mathrm{b}}−\mathrm{2x}\right\}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}\:+\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}}{\mathrm{x}−\mathrm{2}} \\ $$$$\:=\:−\mathrm{2M}−\mathrm{2}\: \\ $$
Commented by liberty last updated on 10/Jan/21
hahahaha.....
$$\mathrm{hahahaha}….. \\ $$
Answered by rydasss last updated on 11/Jan/21
soal utbk 2019
$${soal}\:{utbk}\:\mathrm{2019} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *