Menu Close

if-lim-x-1-ax-b-4-x-1-5-find-a-b-




Question Number 181602 by ali009 last updated on 27/Nov/22
if   lim_(x→1) (((√(ax+b))−4)/((x−1)))=5    find a,b
iflimx1ax+b4(x1)=5finda,b
Answered by aleks041103 last updated on 27/Nov/22
as the denominator goes to 0, to have  a finite limit, we need (√(ax+b))−4→0  ⇒a+b=16  now, lhopital  lim(((√(ax+b))−4)/(x−1))=lim((a/(2(√(ax+b))))/1)=(a/(2(√(16))))=(a/8)=5  ⇒a=40  ⇒b=16−40=−24  ⇒(a,b)=(40,−24)
asthedenominatorgoesto0,tohaveafinitelimit,weneedax+b40a+b=16now,lhopitallimax+b4x1=lima2ax+b1=a216=a8=5a=40b=1640=24(a,b)=(40,24)
Answered by cortano1 last updated on 27/Nov/22
 (i) lim_(x→1)  (√(ax+b))−4 = 0    ⇒a+b = 16 ⇒b=16−a   (ii) lim_(x→1)  (((√(ax+16−a))−4)/(x−1)) = 5  ⇒ lim_(x→1)  ((ax+16−a−16)/((x−1)((√(ax+16−a))+4))) =5  ⇒ lim_(x→1)  ((a(x−1))/((x−1) (8))) = 5  ⇒ { ((a=40)),((b=−24)) :}
(i)limx1ax+b4=0a+b=16b=16a(ii)limx1ax+16a4x1=5limx1ax+16a16(x1)(ax+16a+4)=5limx1a(x1)(x1)(8)=5{a=40b=24

Leave a Reply

Your email address will not be published. Required fields are marked *