Menu Close

If-lim-x-3-17-ax-3-1-3-b-x-3-136-27-then-8a-b-




Question Number 115027 by bemath last updated on 23/Sep/20
If lim_(x→3)  ((17 ((ax+3))^(1/(3 ))  +b)/(x−3)) = ((136)/(27))  then 8a+b = ?
Iflimx317ax+33+bx3=13627then8a+b=?
Answered by bobhans last updated on 23/Sep/20
limit form (0/0). numerator must be = 0  (1) 17 ((3a+3))^(1/(3 ))  +b =0;  b ⇒−17 ((3a+3))^(1/(3 ))   (2) lim_(x→3)  ((17 ((ax+3))^(1/3)  −17 ((3a+3))^(1/(3 )) )/(x−3)) =((136)/(27))         lim_(x→3)  ((((ax+3))^(1/(3 ))  −((3a+3))^(1/(3 )) )/(x−3)) = (8/(27))  set x=3+r ; r→0      lim_(r→0)  ((((ar+3a+3))^(1/(3 ))  −((3a+3))^(1/(3 )) )/r) = (8/(27))  remember (p)^(1/3)  −(q)^(1/(3 ))  = ((p−q)/( (p^2 )^(1/(3 )) +((pq))^(1/(3 ))  +(q^2 )^(1/(3 )) ))   lim_(r→0)  (((ar+3a+3)−(3a+3))/(r ((((ar+3a+3)^2 ))^(1/(3 )) +(((3a+3)(ar+3a+3)))^(1/(3 )) +(((3a+3)^2 ))^(1/(3 )) )) =(8/(27))  lim_(r→0)  ((ar)/(r((((ar+3a+3)^2 ))^(1/(3 )) +(((ar+3a+3)(3a+3)))^(1/(3 )) +(((3a+3)^2 ))^(1/(3 )) )))=(8/(27))  ⇔ (a/(3 (((3a+3)^2 ))^(1/(3 )) )) = (8/(27)) ;  by inspection we get a = 8 , check (8/(3 (((24+3))^(1/(3 )) )^2 ))  = (8/(3×9)) = (8/(27)). Then b = −17 ((24+3))^(1/3)  =−51  ∴ 8a+b = 64−51=13
limitform00.numeratormustbe=0(1)173a+33+b=0;b173a+33(2)limx317ax+33173a+33x3=13627limx3ax+333a+33x3=827setx=3+r;r0limr0ar+3a+333a+33r=827rememberp3q3=pqp23+pq3+q23limr0(ar+3a+3)(3a+3)r((ar+3a+3)23+(3a+3)(ar+3a+3)3+(3a+3)23=827limr0arr((ar+3a+3)23+(ar+3a+3)(3a+3)3+(3a+3)23)=827a3(3a+3)23=827;byinspectionwegeta=8,check83(24+33)2=83×9=827.Thenb=1724+33=518a+b=6451=13

Leave a Reply

Your email address will not be published. Required fields are marked *