Menu Close

If-lim-x-3-3x-7-20x-4-1-3-ax-b-x-3-2-exist-what-is-the-value-of-ab-




Question Number 95980 by john santu last updated on 29/May/20
If lim_(x→3) (((√(3x+7))−((20x+4))^(1/(3  ))  +ax+b)/((x−3)^2 ))  exist , what is the value of ab
$$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3x}+\mathrm{7}}−\sqrt[{\mathrm{3}\:\:}]{\mathrm{20x}+\mathrm{4}}\:+{a}\mathrm{x}+{b}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\mathrm{exist}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{ab}\: \\ $$
Answered by i jagooll last updated on 29/May/20
set x−3 = y, x=y+3 , y→0  lim_(y→0)  (((√(3y+16))−((20y+64))^(1/(3  )) +ay+3a+b)/y^2 )  numerator must be = 0   ⇒4−4+3a+b = 0 , b = −3a  L′Hopital  lim_(y→0)  (((3/(2(√(3y+16))))−((20)/(3 (((20y+64)^2 ))^(1/(3  )) ))+a)/(2y))  ⇒numerator must be = 0  ⇒(3/8)−((20)/(3.16)) +a = 0  a = (5/(12))−(3/8) = ((10−9)/(24)) = (1/(24))  then b = −3a = −(1/8)  so a×b = − (1/(192)) .•
$$\mathrm{set}\:{x}−\mathrm{3}\:=\:{y},\:{x}={y}+\mathrm{3}\:,\:{y}\rightarrow\mathrm{0} \\ $$$$\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}{y}+\mathrm{16}}−\sqrt[{\mathrm{3}\:\:}]{\mathrm{20}{y}+\mathrm{64}}+{ay}+\mathrm{3}{a}+{b}}{{y}^{\mathrm{2}} } \\ $$$${numerator}\:{must}\:{be}\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\mathrm{4}−\mathrm{4}+\mathrm{3}{a}+{b}\:=\:\mathrm{0}\:,\:{b}\:=\:−\mathrm{3}{a} \\ $$$${L}'\mathrm{Hopital} \\ $$$$\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{3y}+\mathrm{16}}}−\frac{\mathrm{20}}{\mathrm{3}\:\sqrt[{\mathrm{3}\:\:}]{\left(\mathrm{20y}+\mathrm{64}\right)^{\mathrm{2}} }}+{a}}{\mathrm{2}{y}} \\ $$$$\Rightarrow\mathrm{numerator}\:\mathrm{must}\:\mathrm{be}\:=\:\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{8}}−\frac{\mathrm{20}}{\mathrm{3}.\mathrm{16}}\:+{a}\:=\:\mathrm{0} \\ $$$${a}\:=\:\frac{\mathrm{5}}{\mathrm{12}}−\frac{\mathrm{3}}{\mathrm{8}}\:=\:\frac{\mathrm{10}−\mathrm{9}}{\mathrm{24}}\:=\:\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${then}\:{b}\:=\:−\mathrm{3}{a}\:=\:−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${so}\:{a}×{b}\:=\:−\:\frac{\mathrm{1}}{\mathrm{192}}\:.\bullet \\ $$
Commented by john santu last updated on 29/May/20
greatt
$$\mathrm{greatt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *