Menu Close

if-lim-x-3-x-ax-b-2x-6-1-6-then-a-2b-




Question Number 99341 by bemath last updated on 20/Jun/20
if lim_(x→3)  ((x−(√(ax+b)))/(2x−6)) = −(1/6)  then a−2b =
$$\mathrm{if}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{x}−\sqrt{\mathrm{ax}+\mathrm{b}}}{\mathrm{2x}−\mathrm{6}}\:=\:−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{then}\:\mathrm{a}−\mathrm{2b}\:=\: \\ $$
Commented by bobhans last updated on 20/Jun/20
(1) 3−(√(3a+b)) = 0   9 = 3a+b ⇒b = 9−3a  (2)lim_(x→3)  ((x−(√(ax+9−3a)))/(2x−6)) = −(1/6)  lim_(x→3) ((1−(a/(2(√(ax+9−3a)))))/2) = −(1/6)   1−(a/6) = −(2/6); 6−a = −2 ⇒a = 8   b = 9−24 = −15 . Then a−2b = 8+30 = 38
$$\left(\mathrm{1}\right)\:\mathrm{3}−\sqrt{\mathrm{3a}+\mathrm{b}}\:=\:\mathrm{0}\: \\ $$$$\mathrm{9}\:=\:\mathrm{3a}+\mathrm{b}\:\Rightarrow\mathrm{b}\:=\:\mathrm{9}−\mathrm{3a} \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{x}−\sqrt{\mathrm{ax}+\mathrm{9}−\mathrm{3a}}}{\mathrm{2x}−\mathrm{6}}\:=\:−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\mathrm{1}−\frac{\mathrm{a}}{\mathrm{2}\sqrt{\mathrm{ax}+\mathrm{9}−\mathrm{3a}}}}{\mathrm{2}}\:=\:−\frac{\mathrm{1}}{\mathrm{6}}\: \\ $$$$\mathrm{1}−\frac{\mathrm{a}}{\mathrm{6}}\:=\:−\frac{\mathrm{2}}{\mathrm{6}};\:\mathrm{6}−\mathrm{a}\:=\:−\mathrm{2}\:\Rightarrow\mathrm{a}\:=\:\mathrm{8}\: \\ $$$$\mathrm{b}\:=\:\mathrm{9}−\mathrm{24}\:=\:−\mathrm{15}\:.\:\mathrm{Then}\:\mathrm{a}−\mathrm{2b}\:=\:\mathrm{8}+\mathrm{30}\:=\:\mathrm{38} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *