Menu Close

If-lim-x-a-x-2-bx-4b-x-a-6-find-a-and-b-




Question Number 125575 by ZiYangLee last updated on 12/Dec/20
If lim_(x→a) ((x^2 −bx+4b)/(x−a))=−6, find a and b.
$$\mathrm{If}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{bx}+\mathrm{4}{b}}{{x}−{a}}=−\mathrm{6},\:\mathrm{find}\:{a}\:\mathrm{and}\:{b}. \\ $$
Answered by ajfour last updated on 12/Dec/20
a^2 −ab+4b=0  2a−b=−6  ⇒  a^2 +(2a+6)(4−a)=0  ⇒  a^2 −2a−24=0  ⇒   (a−1)^2 =25  ⇒    a=1±5   (a,b)≡(6, 18), (−4, −2)
$${a}^{\mathrm{2}} −{ab}+\mathrm{4}{b}=\mathrm{0} \\ $$$$\mathrm{2}{a}−{b}=−\mathrm{6} \\ $$$$\Rightarrow\:\:{a}^{\mathrm{2}} +\left(\mathrm{2}{a}+\mathrm{6}\right)\left(\mathrm{4}−{a}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{a}^{\mathrm{2}} −\mathrm{2}{a}−\mathrm{24}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({a}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$$\Rightarrow\:\:\:\:{a}=\mathrm{1}\pm\mathrm{5} \\ $$$$\:\left({a},{b}\right)\equiv\left(\mathrm{6},\:\mathrm{18}\right),\:\left(−\mathrm{4},\:−\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *