Menu Close

If-lim-x-c-a-0-a-1-x-c-a-2-x-c-2-a-n-x-c-n-x-c-n-0-then-a-0-a-1-a-2-a-n-




Question Number 55634 by gunawan last updated on 01/Mar/19
If lim_(x→c)  ((a_0 +a_1 (x−c)+a_2 (x−c)^2 +...+a_n (x−c)^n )/((x−c)^n ))=0  then a_0 +a_1 +a_2 +..+a_n =..
$$\mathrm{If}\:\underset{{x}\rightarrow{c}} {\mathrm{lim}}\:\frac{{a}_{\mathrm{0}} +{a}_{\mathrm{1}} \left({x}−{c}\right)+{a}_{\mathrm{2}} \left({x}−{c}\right)^{\mathrm{2}} +…+{a}_{{n}} \left({x}−{c}\right)^{{n}} }{\left({x}−{c}\right)^{{n}} }=\mathrm{0} \\ $$$$\mathrm{then}\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +..+{a}_{{n}} =.. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19
t=x−c  lim_(t→0)  ((a_0 +a_1 t+a_2 t^2 +a_3 t^3 +...+a_n t^n )/t^n )   for((0/0)) form a_0 =0  lim_(t→0)  ((a_1 +2a_2 t+3a_3 t^2 +...+na_n t^(n−1) )/(nt^(n−1) ))  to make ((0/0))form a_1 →0  so in my view Σ_(i=0) ^n a_i =0   let others check...
$${t}={x}−{c} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{a}_{\mathrm{0}} +{a}_{\mathrm{1}} {t}+{a}_{\mathrm{2}} {t}^{\mathrm{2}} +{a}_{\mathrm{3}} {t}^{\mathrm{3}} +…+{a}_{{n}} {t}^{{n}} }{{t}^{{n}} } \\ $$$$\:{for}\left(\frac{\mathrm{0}}{\mathrm{0}}\right)\:{form}\:{a}_{\mathrm{0}} =\mathrm{0} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} {t}+\mathrm{3}{a}_{\mathrm{3}} {t}^{\mathrm{2}} +…+{na}_{{n}} {t}^{{n}−\mathrm{1}} }{{nt}^{{n}−\mathrm{1}} } \\ $$$${to}\:{make}\:\left(\frac{\mathrm{0}}{\mathrm{0}}\right){form}\:{a}_{\mathrm{1}} \rightarrow\mathrm{0} \\ $$$${so}\:{in}\:{my}\:{view}\:\underset{{i}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{i}} =\mathrm{0}\: \\ $$$${let}\:{others}\:{check}… \\ $$
Commented by gunawan last updated on 01/Mar/19
yes   thank you Sir
$$\mathrm{yes}\: \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19
most welcome...pls check the others solved problem or  upload the answer only...not details...
$${most}\:{welcome}…{pls}\:{check}\:{the}\:{others}\:{solved}\:{problem}\:{or} \\ $$$${upload}\:{the}\:{answer}\:{only}…{not}\:{details}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *