Menu Close

If-lim-x-p-p-x-x-p-x-x-p-p-1-then-p-




Question Number 115664 by bemath last updated on 27/Sep/20
If lim_(x→p)  ((p^x −x^p )/(x^x −p^p )) = 1 then p = ?
Iflimxppxxpxxpp=1thenp=?
Answered by Olaf last updated on 27/Sep/20
x = p+u  lim_(x→p) ((e^(xlnp) −e^(plnx) )/(e^(xlnx) −e^(plnp) ))  lim_(x→p) ((e^((xlnp+plnx)/2) (e^((xlnp−plnx)/2) −e^(−((xlnp−plnx)/2)) ))/(e^((xlnx+plnp)/2) (e^((xlnx−plnp)/2) −e^(−((xlnx−plnp)/2)) )))  lim_(x→p)  e^((xln(p/x)+pln(x/p))/2) [((sinh(((xlnp−plnx)/2)))/(sinh(((xlnx−plnp)/2))))]  lim_(x→p)  1×[((sinh(((xlnp−plnx)/2)))/(sinh(((xlnx−plnp)/2))))]  lim_(x→p)  [(((((lnp−(p/x))/2))cosh(((xlnp−plnx)/2)))/((((lnx+1)/2))cosh(((xlnx−plnp)/2))))]  = ((lnp−1)/(lnp+1)) = ((ln((p/e)))/(ln(ep)))   ((ln((p/e)))/(ln(ep))) = 1 ⇒ (p/e) = ep ?  I′m surely wrong.
x=p+ulimxpexlnpeplnxexlnxeplnplimxpexlnp+plnx2(exlnpplnx2exlnpplnx2)exlnx+plnp2(exlnxplnp2exlnxplnp2)limxpexlnpx+plnxp2[sinh(xlnpplnx2)sinh(xlnxplnp2)]limxp1×[sinh(xlnpplnx2)sinh(xlnxplnp2)]limxp[(lnppx2)cosh(xlnpplnx2)(lnx+12)cosh(xlnxplnp2)]=lnp1lnp+1=ln(pe)ln(ep)ln(pe)ln(ep)=1pe=ep?Imsurelywrong.
Answered by Dwaipayan Shikari last updated on 27/Sep/20
lim_(x→p) ((p^x −x^p )/(x^x −p^p ))=((p^x logp−px^(p−1) )/(x^x (1+logx)))=((p^p (logp−1))/(p^p (logp+1)))=1  ((logp−1)/(logp+1))=1  Oh i think it is independent of P!
limxppxxpxxpp=pxlogppxp1xx(1+logx)=pp(logp1)pp(logp+1)=1logp1logp+1=1OhithinkitisindependentofP!

Leave a Reply

Your email address will not be published. Required fields are marked *