If-lim-x-p-p-x-x-p-x-x-p-p-1-then-p- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 115664 by bemath last updated on 27/Sep/20 Iflimx→ppx−xpxx−pp=1thenp=? Answered by Olaf last updated on 27/Sep/20 x=p+ulimx→pexlnp−eplnxexlnx−eplnplimx→pexlnp+plnx2(exlnp−plnx2−e−xlnp−plnx2)exlnx+plnp2(exlnx−plnp2−e−xlnx−plnp2)limx→pexlnpx+plnxp2[sinh(xlnp−plnx2)sinh(xlnx−plnp2)]limx→p1×[sinh(xlnp−plnx2)sinh(xlnx−plnp2)]limx→p[(lnp−px2)cosh(xlnp−plnx2)(lnx+12)cosh(xlnx−plnp2)]=lnp−1lnp+1=ln(pe)ln(ep)ln(pe)ln(ep)=1⇒pe=ep?I′msurelywrong. Answered by Dwaipayan Shikari last updated on 27/Sep/20 limx→ppx−xpxx−pp=pxlogp−pxp−1xx(1+logx)=pp(logp−1)pp(logp+1)=1logp−1logp+1=1OhithinkitisindependentofP! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-50126Next Next post: Question-181201 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.