Menu Close

If-log-2x-1-18-log-18-1-3y-log-3y-1-2x-find-3x-2y-




Question Number 100675 by bobhans last updated on 28/Jun/20
If log _(2x) ((1/(18))) = log _(18) ((1/(3y))) = log _(3y) ((1/(2x)))  find 3x−2y
Iflog2x(118)=log18(13y)=log3y(12x)find3x2y
Commented by bramlex last updated on 28/Jun/20
⇔ 2x = 3y = 18 → { ((x=9)),((y=6)) :}  ∴ 3x−2y = 27−12 = 15
2x=3y=18{x=9y=63x2y=2712=15
Answered by 1549442205 last updated on 28/Jun/20
  log_(2x) ((1/(18)))=log_(2x) (1)−log_(2x) 18=−log_(2x) 18  =log_(3y) ((1/(2x)))=log_(3y) 1−log_(3y) (2x)=−log_(3y) (2x)  log_(18) ((1/(3y)))=log_(18) 1−log_(18) (3y)=−log_(18) (3y)  ,so from the hypothesis we get:  log_(2x) 18=log_(3y) (2x)=log_(18) (3y)=a.So   { (((2x)^a =18(1))),(((3y)^a =2x(2)   (∗))),((18^a =3y (3))) :}  From (2)we get (2x)^a =[(3y)^a ]^a =(3y)^a^2  (4)  From (3) we get (3y)^a^2  =(18^a )^a^2  =18^a^3  (5)  From(4) ,(5) we get (2x)^a =18^a^3   (6)  From (1) and (6) we obtain  18=18^a^3  ⇒a^3 =1⇔a=1.Replace into (∗)  we get  { ((3y=2x)),((2x=18)),((18=3y)) :}   ⇔ { ((x=9)),((y=6)) :}  Therefore,3x−2y=3×9−2×6=15
log2x(118)=log2x(1)log2x18=log2x18=log3y(12x)=log3y1log3y(2x)=log3y(2x)log18(13y)=log181log18(3y)=log18(3y),sofromthehypothesisweget:log2x18=log3y(2x)=log18(3y)=a.So{(2x)a=18(1)(3y)a=2x(2)()18a=3y(3)From(2)weget(2x)a=[(3y)a]a=(3y)a2(4)From(3)weget(3y)a2=(18a)a2=18a3(5)From(4),(5)weget(2x)a=18a3(6)From(1)and(6)weobtain18=18a3a3=1a=1.Replaceinto()weget{3y=2x2x=1818=3y{x=9y=6Therefore,3x2y=3×92×6=15

Leave a Reply

Your email address will not be published. Required fields are marked *