Menu Close

If-log-4-x-log-4-x-2-log-4-x-3-log-4-x-4-1-find-the-value-of-x-




Question Number 117392 by ZiYangLee last updated on 11/Oct/20
If   log_4 x+(log_4 x)^2 +(log_4 x)^3 +(log_4 x)^4 +...=1  find the value of x.
Iflog4x+(log4x)2+(log4x)3+(log4x)4+=1findthevalueofx.
Answered by Dwaipayan Shikari last updated on 11/Oct/20
log_4 x+(log_4 x)^2 +...=1  ((log_4 x)/(1−log_4 x))=1  ((log_4 x)/(log_4 ((4/x))))=1⇒log_4 ((4/x))=log_4 x   ⇒(4/x)=x⇒      x =2  So  it becomes log_4 2+(log_4 2)^2 +...=(1/2)+(1/4)+(1/8)+....=1
log4x+(log4x)2+=1log4x1log4x=1log4xlog4(4x)=1log4(4x)=log4x4x=xx=2Soitbecomeslog42+(log42)2+=12+14+18+.=1
Answered by $@y@m last updated on 11/Oct/20
((log x)/(1−log x))=1  1−log x=log x  2log x=1  log x=(1/2)  x=4^(1/2)   x=2
logx1logx=11logx=logx2logx=1logx=12x=412x=2
Commented by ZiYangLee last updated on 12/Oct/20
K
K

Leave a Reply

Your email address will not be published. Required fields are marked *