Question Number 25593 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17
$$\boldsymbol{{if}}\:\::\:\:\:\boldsymbol{{log}}_{\mathrm{6}} ^{\mathrm{45}} =\boldsymbol{{x}}\:\:,\:\:\:\boldsymbol{{log}}_{\mathrm{18}} ^{\mathrm{24}} =\boldsymbol{{y}} \\ $$$$\boldsymbol{{then}}\::\:\:\:\boldsymbol{{log}}\:_{\mathrm{12}} ^{\mathrm{25}} \:=?\left(\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x},\mathrm{y}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 14/Dec/17
$$\mathrm{log}_{\mathrm{6}} \mathrm{45}=\mathrm{x}\Rightarrow\mathrm{6}^{\mathrm{x}} =\mathrm{45}\Rightarrow\mathrm{2}^{\mathrm{x}} .\mathrm{3}^{\mathrm{x}} =\mathrm{3}^{\mathrm{2}} .\mathrm{5}……….\left(\mathrm{i}\right) \\ $$$$\mathrm{log}_{\mathrm{18}} \mathrm{24}=\mathrm{y}\Rightarrow\mathrm{18}^{\mathrm{y}} =\mathrm{24}\Rightarrow\mathrm{2}^{\mathrm{y}} .\mathrm{3}^{\mathrm{2y}} =\mathrm{2}^{\mathrm{3}} .\mathrm{3}……..\left(\mathrm{ii}\right) \\ $$$$\mathrm{log}_{\mathrm{12}} \mathrm{25}=\mathrm{z}\:\left(\mathrm{say}\right)\Rightarrow\mathrm{12}^{\mathrm{z}} =\mathrm{25}\Rightarrow\mathrm{2}^{\mathrm{2z}} .\mathrm{3}^{\mathrm{z}} =\mathrm{5}^{\mathrm{2}} …..\left(\mathrm{iii}\right) \\ $$$$\mathrm{Determining}\:\mathrm{z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{x},\mathrm{y}. \\ $$$$\left(\mathrm{i}\right)×\left(\mathrm{ii}\right)×\left(\mathrm{iii}\right): \\ $$$$\:\:\:\:\left(\mathrm{2}^{\mathrm{x}} .\mathrm{3}^{\mathrm{x}} \right)\left(\mathrm{2}^{\mathrm{y}} .\mathrm{3}^{\mathrm{2y}} \right)\left(\mathrm{2}^{\mathrm{2z}} .\mathrm{3}^{\mathrm{z}} \right)=\left(\mathrm{3}^{\mathrm{2}} .\mathrm{5}\right)\left(\mathrm{2}^{\mathrm{3}} .\mathrm{3}\right)\left(\mathrm{5}^{\mathrm{2}} \right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}+\mathrm{y}+\mathrm{2z}} .\mathrm{3}^{\mathrm{x}+\mathrm{2y}+\mathrm{z}} =\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{3}} .\mathrm{5}^{\mathrm{3}} \\ $$$$\:\:\:\mathrm{2}^{\mathrm{x}+\mathrm{y}} .\mathrm{2}^{\mathrm{2z}} .\mathrm{3}^{\mathrm{x}+\mathrm{2y}} .\mathrm{3}^{\mathrm{z}} =\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{3}} .\mathrm{5}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{2}^{\mathrm{2}} \right)^{\mathrm{z}} \left(\mathrm{3}\right)^{\mathrm{z}} =\frac{\mathrm{2}^{\mathrm{3}} .\mathrm{3}^{\mathrm{3}} .\mathrm{5}^{\mathrm{3}} }{\mathrm{2}^{\mathrm{x}+\mathrm{y}} .\mathrm{3}^{\mathrm{x}+\mathrm{2y}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{12}^{\mathrm{z}} =\mathrm{2}^{\mathrm{3}-\mathrm{x}-\mathrm{y}} .\mathrm{3}^{\mathrm{3}-\mathrm{x}-\mathrm{2y}} .\mathrm{5}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{log}\left(\mathrm{12}^{\mathrm{z}} \right)=\mathrm{log}\left(\mathrm{2}^{\mathrm{3}-\mathrm{x}-\mathrm{y}} .\mathrm{3}^{\mathrm{3}-\mathrm{x}-\mathrm{2y}} .\mathrm{5}^{\mathrm{3}} \right) \\ $$$$\:\:\:\:\:\:\mathrm{log}_{\mathrm{12}} \mathrm{25}=\frac{\mathrm{log}\left(\mathrm{2}^{\mathrm{3}-\mathrm{x}-\mathrm{y}} .\mathrm{3}^{\mathrm{3}-\mathrm{x}-\mathrm{2y}} .\mathrm{5}^{\mathrm{3}} \right)}{\mathrm{log}\left(\mathrm{12}\right)}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Or} \\ $$$$\:\:\mathrm{log}_{\mathrm{12}} \mathrm{25}=\mathrm{log}_{\mathrm{12}} \left(\mathrm{2}^{\mathrm{3}-\mathrm{x}-\mathrm{y}} .\mathrm{3}^{\mathrm{3}-\mathrm{x}-\mathrm{2y}} .\mathrm{5}^{\mathrm{3}} \right) \\ $$
Commented by Rasheed.Sindhi last updated on 14/Dec/17
$$\mathrm{The}\:\mathrm{answer}\:\mathrm{has}\:\mathrm{been}\:\mathrm{corrected}. \\ $$