Menu Close

if-log-a-b-c-loga-logb-logc-prove-log-2a-1-a-2-2b-1-b-2-2c-1-c-2-log-2a-1-a-2-log-2b-1-b-2-log-2c-1-c-2-




Question Number 58245 by tanmay last updated on 20/Apr/19
if log(a+b+c)=loga+logb+logc  prove  log(((2a)/(1−a^2 ))+((2b)/(1−b^2 ))+((2c)/(1−c^2 )))=log(((2a)/(1−a^2 )))+log(((2b)/(1−b^2 )))+log(((2c)/(1−c^2 )))
iflog(a+b+c)=loga+logb+logcprovelog(2a1a2+2b1b2+2c1c2)=log(2a1a2)+log(2b1b2)+log(2c1c2)
Answered by Kunal12588 last updated on 20/Apr/19
log(a+b+c)=log a + log b + log c  ⇒log(a+b+c)=log(abc)  ⇒a+b+c=abc  let  a=tan α=t_1 ,  b=tan β=t_2 ,  c=tan γ=t_3   ∴  t_1 +t_2 +t_3 =t_1 t_2 t_3   ⇒t_1 +t_2 =−t_3 (1−t_1 t_2 )  ⇒−t_3 =((t_1 +t_2 )/(1−t_1 t_2 ))  ⇒tan(π−γ)=tan(α+β)  ⇒α+β+γ=π  ⇒2α+2β+2γ=2π  ⇒tan(2α+2β)=tan(2π−2γ)  ⇒((tan 2α + tan 2β)/(1−tan 2α tan2β))=−tan 2γ  ⇒tan 2α + tan 2β + tan 2γ = tan 2α tan2β  tan 2γ  ⇒log(((2t_1 )/(1−t_1 ^2 ))+((2t_2 )/(1−t_2 ^2 ))+((2t_3 )/(1−t_3 ^2 )))=log(((2t_1 )/(1−t_1 ^2 ))×((2t_2 )/(1−t_2 ^2 ))×((2t_3 )/(1−t_3 ^2 )))  ⇒log(((2a)/(1−a^2 ))+((2b)/(1−b^2 ))+((2c)/(1−c^2 )))=log(((2a)/(1−a^2 )))+log(((2b)/(1−b^2 )))+log(((2c)/(1−c^2 )))
log(a+b+c)=loga+logb+logclog(a+b+c)=log(abc)a+b+c=abcleta=tanα=t1,b=tanβ=t2,c=tanγ=t3t1+t2+t3=t1t2t3t1+t2=t3(1t1t2)t3=t1+t21t1t2tan(πγ)=tan(α+β)α+β+γ=π2α+2β+2γ=2πtan(2α+2β)=tan(2π2γ)tan2α+tan2β1tan2αtan2β=tan2γtan2α+tan2β+tan2γ=tan2αtan2βtan2γlog(2t11t12+2t21t22+2t31t32)=log(2t11t12×2t21t22×2t31t32)log(2a1a2+2b1b2+2c1c2)=log(2a1a2)+log(2b1b2)+log(2c1c2)
Commented by tanmay last updated on 20/Apr/19
bah! very good excellent...
bah!verygoodexcellent
Commented by Kunal12588 last updated on 20/Apr/19
Thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *