Menu Close

if-log-a-c-log-c-b-2-log-b-c-log-a-c-0-find-1-log-a-b-1-log-b-c-1-log-c-a-




Question Number 145406 by mathdanisur last updated on 04/Jul/21
if  log_a c+log_c b=2 ; log_b c+log_a c=0  find  (1/(log_a b)) + (1/(log_b c)) + (1/(log_c a)) = ?
iflogac+logcb=2;logbc+logac=0find1logab+1logbc+1logca=?
Answered by som(math1967) last updated on 04/Jul/21
log_b c+log_a c=0  log_b c×log_c b=−log_a c×log_c b  1=−log_a b  ∴log_b a=−1  (1/(log_a b))+(1/(log_b c))+(1/(log_c a))  log_b a+log_c b+log_a c  −1+2=1 [∵log_a c+log_c b=2]
logbc+logac=0logbc×logcb=logac×logcb1=logablogba=11logab+1logbc+1logcalogba+logcb+logac1+2=1[logac+logcb=2]
Commented by mathdanisur last updated on 04/Jul/21
alot cool thankyou Ser
alotcoolthankyouSer
Answered by liberty last updated on 05/Jul/21
  { ((log _a c+log _c b = 2 ...(1))),((log _b c + log _a c = 0 ...(2))) :}   we know that log _a c = (1/(log _c a))  so log _b c + log _a c = 0  ⇒(1/(log _c b)) = −(1/(log _c a)) or log _c a =−log _c b   then a = (1/b) ...(3)  substract eq(1) &(2) give   ⇒ log _c b−log _b c = 2   now consider that   (1/(log _a b)) + (1/(log _b c)) + (1/(log _c a)) =  log _b a + log _c b + log _a c =  −1+ log _c b−log _b c =  −1+2 = 1.
{logac+logcb=2(1)logbc+logac=0(2)weknowthatlogac=1logcasologbc+logac=01logcb=1logcaorlogca=logcbthena=1b(3)substracteq(1)&(2)givelogcblogbc=2nowconsiderthat1logab+1logbc+1logca=logba+logcb+logac=1+logcblogbc=1+2=1.
Commented by mathdanisur last updated on 05/Jul/21
alot cool thanks Ser
alotcoolthanksSer

Leave a Reply

Your email address will not be published. Required fields are marked *