Menu Close

If-log-x-log-y-log-z-x-y-z-gt-1-are-in-GP-then-2x-log-bx-3x-log-by-4x-log-bz-are-in-A-P-True-False-




Question Number 25378 by Tinkutara last updated on 09/Dec/17
If log x, log y, log z (x,y,z > 1) are in  GP then 2x+log(bx), 3x+log(by),  4x+log(bz) are in A.P.  True/False?
Iflogx,logy,logz(x,y,z>1)areinGPthen2x+log(bx),3x+log(by),4x+log(bz)areinA.P.True/False?
Answered by Rasheed.Sindhi last updated on 09/Dec/17
((log y)/(log x))=((log z)/(log y))   Given  To be proved:  {3x+log(by)}−{2x+log(bx)}       ={4x+log(bz)}−{3x+log(by)}  x+log(by)−log(bx)=x+log(bz)−log(by)  x+log(((by)/(bx)))=x+log(((bz)/(by)))  log((y/x))=log((z/y))  log y−log x=log z−log y    ∴ log x,log y, logz are in AP  We can also prove vice versa  i-e If log x,log y, logz are in AP  then 2x+... , 3x+... , 4x+... are   also in AP.  ∴ If log x,log y, logz are in GP  then 2x+..,3x+..,4x+... can′t be  in GP (∵ a sequence can′t be both  AP and GP simultneously in general.)  Hence False.
logylogx=logzlogyGivenTobeproved:{3x+log(by)}{2x+log(bx)}={4x+log(bz)}{3x+log(by)}x+log(by)log(bx)=x+log(bz)log(by)x+log(bybx)=x+log(bzby)log(yx)=log(zy)logylogx=logzlogylogx,logy,logzareinAPWecanalsoproveviceversaieIflogx,logy,logzareinAPthen2x+,3x+,4x+arealsoinAP.Iflogx,logy,logzareinGPthen2x+..,3x+..,4x+cantbeinGP(asequencecantbebothAPandGPsimultneouslyingeneral.)HenceFalse.
Commented by Tinkutara last updated on 09/Dec/17
Thank you Sir!
ThankyouSir!

Leave a Reply

Your email address will not be published. Required fields are marked *