Menu Close

If-lt-lt-lt-2pi-and-cos-x-cos-x-cos-x-0-for-all-x-R-then-is-2pi-3-




Question Number 16834 by sushmitak last updated on 26/Jun/17
If α<β<γ<2π and  cos (x+α)+cos (x+β)+cos (x+γ)=0  for all x∈R, then is  γ−α=((2π)/3)?
Ifα<β<γ<2πandcos(x+α)+cos(x+β)+cos(x+γ)=0forallxR,thenisγα=2π3?
Commented by ajfour last updated on 27/Jun/17
no, i believe   γ−α=((4π)/3) , then.
no,ibelieveγα=4π3,then.
Commented by ajfour last updated on 27/Jun/17
Commented by prakash jain last updated on 27/Jun/17
upon expansion  ∀x  cos (x)(cos α+cos β+cos γ)  −sin x(sin α+sin β+sin γ)=0  since above statement is true  for all x  cos α+cos β+cos γ=0  sin α+sin β+sin γ=0  cos β=−(cos α+cos γ)   ......A  sin β=−(sin α+sin γ)     ......B  square and add  1=2+2(cos αcos γ+sin αsin γ)  cos (γ−α)=−(1/2)  γ−α=2nπ±((2π)/3)  since γ<2π  γ−α=((2π)/3) or ((4π)/3)
uponexpansionxcos(x)(cosα+cosβ+cosγ)sinx(sinα+sinβ+sinγ)=0sinceabovestatementistrueforallxcosα+cosβ+cosγ=0sinα+sinβ+sinγ=0cosβ=(cosα+cosγ)Asinβ=(sinα+sinγ)Bsquareandadd1=2+2(cosαcosγ+sinαsinγ)cos(γα)=12γα=2nπ±2π3sinceγ<2πγα=2π3or4π3

Leave a Reply

Your email address will not be published. Required fields are marked *