Menu Close

If-lx-my-1-touches-the-curve-ax-n-by-n-1-show-that-l-a-n-n-1-m-b-n-n-1-1-




Question Number 84067 by niroj last updated on 09/Mar/20
 If lx+my=1 touches the curve (ax)^n +(by)^n =1, show that   ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1.
Iflx+my=1touchesthecurve(ax)n+(by)n=1,showthat(la)nn1+(mb)nn1=1.
Answered by mind is power last updated on 09/Mar/20
l=m=a=b⇒  1+1=2  x+y=1  x^2 +y^2 =1⇒xy=0  the Quation is Tangente ?
l=m=a=b1+1=2x+y=1x2+y2=1xy=0theQuationisTangente?
Answered by som(math1967) last updated on 09/Mar/20
let at (p_, q) line touches the curve  ∴(ap)^n +(bq)^n =1  slope of line   ((dy/dx))_(p,q) =((−a^n p^(n−1) )/(b^n q^(n−1) ))  equn. of line  y−q=((−a^n p^(n−1) )/(b^n q^(n−1) ))(x−p)  a^n p^(n−1) x+b^n q^(n−1) y=(ap)^n +(bq)^n =1  [(ap)^n +(bq)^n =1]  Now lx+my=1 and  a^n p^(n−1) x+b^n q^(n−1) y=1 are same  st. line ∴((a^n p^(n−1) )/l)=((b^n q^(n−1) )/m)=(1/1)  ∴p=((l/a^n ))^(1/(n−1))  q=((m/b^n ))^(1/(n−1))   now lp+mq=1  [line touches at (p,q)]  ((l×l^(1/(n−1)) )/a^(n/(n−1)) ) +((m×m^(1/(n−1)) )/b^(n/(n−1)) )=1  ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1
letat(p,q)linetouchesthecurve(ap)n+(bq)n=1slopeofline(dydx)p,q=anpn1bnqn1equn.oflineyq=anpn1bnqn1(xp)anpn1x+bnqn1y=(ap)n+(bq)n=1[(ap)n+(bq)n=1]Nowlx+my=1andanpn1x+bnqn1y=1aresamest.lineanpn1l=bnqn1m=11p=(lan)1n1q=(mbn)1n1nowlp+mq=1[linetouchesat(p,q)]l×l1n1ann1+m×m1n1bnn1=1(la)nn1+(mb)nn1=1
Commented by niroj last updated on 09/Mar/20
good work.
goodwork.
Answered by TANMAY PANACEA last updated on 09/Mar/20
my=1−lx  y=(((−l)/m))x+(1/m)  slope=(((−l)/m)) and point of tangent(α,β)  lα+mβ=1...  (ax)^n +(by)^n =1  a^n ×nx^(n−1) +b^n ×ny^(n−1) ×(dy/dx)=0  (dy/dx)=((−ax^(n−1) )/(by^(n−1) ))=(−1)((a/b))((x/y))^(n−1)   (−1)((a/b))((α/β))^(n−1) =(((−l)/m))  ((α/β))^(n−1) =(((lb)/(ma)))  (α/β)=(((lb)/(ma)))^(1/(n−1))   (α/((lb)^(1/(n−1)) ))=(β/((ma)^(1/(n−1)) ))=k  (say)  α=k.(lb)^(1/(n−1))     and β=k.(ma)^(1/(n−1))   so   (aα)^n +(bβ)^n =1  {a.k.(lb)^(1/(n−1)) }^n +{b.k.(ma)^(1/(n−1)) }^n =1  k^n ×[a^n .(lb)^(n/(n−1)) +b^n .(ma)^(n/(n−1)) ]=1  lα+mβ=1  l×k(lb)^(1/(n−1)) +m×k(ma)^(1/(n−1)) =1  wait pls
my=1lxy=(lm)x+1mslope=(lm)andpointoftangent(α,β)lα+mβ=1(ax)n+(by)n=1an×nxn1+bn×nyn1×dydx=0dydx=axn1byn1=(1)(ab)(xy)n1(1)(ab)(αβ)n1=(lm)(αβ)n1=(lbma)αβ=(lbma)1n1α(lb)1n1=β(ma)1n1=k(say)α=k.(lb)1n1andβ=k.(ma)1n1so(aα)n+(bβ)n=1{a.k.(lb)1n1}n+{b.k.(ma)1n1}n=1kn×[an.(lb)nn1+bn.(ma)nn1]=1lα+mβ=1l×k(lb)1n1+m×k(ma)1n1=1waitpls

Leave a Reply

Your email address will not be published. Required fields are marked *