Question Number 84067 by niroj last updated on 09/Mar/20

Answered by mind is power last updated on 09/Mar/20

Answered by som(math1967) last updated on 09/Mar/20
![let at (p_, q) line touches the curve ∴(ap)^n +(bq)^n =1 slope of line ((dy/dx))_(p,q) =((−a^n p^(n−1) )/(b^n q^(n−1) )) equn. of line y−q=((−a^n p^(n−1) )/(b^n q^(n−1) ))(x−p) a^n p^(n−1) x+b^n q^(n−1) y=(ap)^n +(bq)^n =1 [(ap)^n +(bq)^n =1] Now lx+my=1 and a^n p^(n−1) x+b^n q^(n−1) y=1 are same st. line ∴((a^n p^(n−1) )/l)=((b^n q^(n−1) )/m)=(1/1) ∴p=((l/a^n ))^(1/(n−1)) q=((m/b^n ))^(1/(n−1)) now lp+mq=1 [line touches at (p,q)] ((l×l^(1/(n−1)) )/a^(n/(n−1)) ) +((m×m^(1/(n−1)) )/b^(n/(n−1)) )=1 ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1](https://www.tinkutara.com/question/Q84095.png)
Commented by niroj last updated on 09/Mar/20

Answered by TANMAY PANACEA last updated on 09/Mar/20
![my=1−lx y=(((−l)/m))x+(1/m) slope=(((−l)/m)) and point of tangent(α,β) lα+mβ=1... (ax)^n +(by)^n =1 a^n ×nx^(n−1) +b^n ×ny^(n−1) ×(dy/dx)=0 (dy/dx)=((−ax^(n−1) )/(by^(n−1) ))=(−1)((a/b))((x/y))^(n−1) (−1)((a/b))((α/β))^(n−1) =(((−l)/m)) ((α/β))^(n−1) =(((lb)/(ma))) (α/β)=(((lb)/(ma)))^(1/(n−1)) (α/((lb)^(1/(n−1)) ))=(β/((ma)^(1/(n−1)) ))=k (say) α=k.(lb)^(1/(n−1)) and β=k.(ma)^(1/(n−1)) so (aα)^n +(bβ)^n =1 {a.k.(lb)^(1/(n−1)) }^n +{b.k.(ma)^(1/(n−1)) }^n =1 k^n ×[a^n .(lb)^(n/(n−1)) +b^n .(ma)^(n/(n−1)) ]=1 lα+mβ=1 l×k(lb)^(1/(n−1)) +m×k(ma)^(1/(n−1)) =1 wait pls](https://www.tinkutara.com/question/Q84103.png)