Menu Close

If-m-1-n-3-then-find-the-value-of-1-2-m-3-6m-2-12m-8-n-n-




Question Number 191546 by MATHEMATICSAM last updated on 25/Apr/23
If m + 1 = (√n) + 3 then find the value of  (1/2)(((m^3  − 6m^2  + 12m −8)/( (√n))) − n)
$$\mathrm{If}\:{m}\:+\:\mathrm{1}\:=\:\sqrt{{n}}\:+\:\mathrm{3}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{m}^{\mathrm{3}} \:−\:\mathrm{6}{m}^{\mathrm{2}} \:+\:\mathrm{12}{m}\:−\mathrm{8}}{\:\sqrt{{n}}}\:−\:{n}\right) \\ $$
Answered by som(math1967) last updated on 25/Apr/23
(1/2)×{(((m−2)^3 )/( (√n))) −n}  (1/2)×{((((√n))^3 )/( (√n))) −n} [m+1=(√n)+3⇒m−2=(√n)]  (1/2)×(n−n)=0
$$\frac{\mathrm{1}}{\mathrm{2}}×\left\{\frac{\left({m}−\mathrm{2}\right)^{\mathrm{3}} }{\:\sqrt{{n}}}\:−{n}\right\} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\left\{\frac{\left(\sqrt{{n}}\right)^{\mathrm{3}} }{\:\sqrt{{n}}}\:−{n}\right\}\:\left[{m}+\mathrm{1}=\sqrt{{n}}+\mathrm{3}\Rightarrow{m}−\mathrm{2}=\sqrt{{n}}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\left({n}−{n}\right)=\mathrm{0} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *