Question Number 157388 by naka3546 last updated on 22/Oct/21
$${If}\:\:{m}\:\mathrm{tan}\:\left(\theta\:−\:\mathrm{30}°\right)\:=\:{n}\:\mathrm{tan}\:\left(\theta\:+\:\mathrm{12}°\right) \\ $$$$\mathrm{cos}\:\mathrm{2}\theta\:\:=\:? \\ $$
Commented by cortano last updated on 22/Oct/21
$$\:{m}\mathrm{tan}\:\left(\theta−\mathrm{30}°\right)={n}\mathrm{tan}\:\left(\mathrm{30}°+\theta−\mathrm{18}°\right) \\ $$$$\Rightarrow{m}\left(\frac{\mathrm{3tan}\:\theta−\sqrt{\mathrm{3}}}{\mathrm{3}+\sqrt{\mathrm{3}}\:\mathrm{tan}\:\theta}\right)={n}\left(\frac{\mathrm{tan}\:\left(\mathrm{30}°+\theta\right)−\mathrm{tan}\:\mathrm{18}°}{\mathrm{1}+\mathrm{tan}\:\left(\mathrm{30}°+\theta\right)\:\mathrm{tan}\:\mathrm{18}°}\right) \\ $$$$\mathrm{tan}\:\mathrm{18}°=\frac{\mathrm{sin}\:\mathrm{18}°}{\mathrm{cos}\:\mathrm{18}°}=\frac{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}}{\:\sqrt{\mathrm{1}−\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:=\:\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}\: \\ $$
Commented by naka3546 last updated on 23/Oct/21
$${thank}\:\:{you},\:\:{sir}. \\ $$
Answered by mr W last updated on 23/Oct/21
$$\frac{{m}}{{n}}\mathrm{tan}\:\left(\theta−\mathrm{30}\right)=\mathrm{tan}\:\left(\theta−\mathrm{30}+\mathrm{18}\right)=\frac{\mathrm{tan}\:\left(\theta−\mathrm{30}\right)+\mathrm{tan}\:\mathrm{18}}{\mathrm{1}−\mathrm{tan}\:\left(\theta−\mathrm{30}\right)\mathrm{tan}\:\mathrm{18}} \\ $$$$\mu=\frac{{m}}{{n}},\:{t}=\mathrm{tan}\:\left(\theta−\mathrm{30}\right) \\ $$$$\mu{t}=\frac{{t}+\mathrm{tan}\:\mathrm{18}}{\mathrm{1}−{t}\:\mathrm{tan}\:\mathrm{18}} \\ $$$$\mu\mathrm{tan}\:\mathrm{18}\:{t}^{\mathrm{2}} −\left(\mu−\mathrm{1}\right){t}+\mathrm{tan}\:\mathrm{18}=\mathrm{0} \\ $$$${t}=\frac{\mu−\mathrm{1}\pm\sqrt{\left(\mu−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}\mu\mathrm{tan}^{\mathrm{2}} \:\mathrm{18}}}{\mathrm{2}\mu\mathrm{tan}\:\mathrm{18}} \\ $$$${t}=\frac{\mathrm{tan}\:\theta−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}{\mathrm{1}+\frac{\mathrm{tan}\:\theta}{\:\sqrt{\mathrm{3}}}}=\frac{\sqrt{\mathrm{3}}\mathrm{tan}\:\theta−\mathrm{1}}{\mathrm{tan}\:\theta+\sqrt{\mathrm{3}}} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{1}+\sqrt{\mathrm{3}}{t}}{\:\sqrt{\mathrm{3}}−{t}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}−\mathrm{1} \\ $$
Commented by naka3546 last updated on 23/Oct/21
$$\mathrm{Thank}\:\:\mathrm{you},\:\:\mathrm{sir}. \\ $$