Menu Close

If-n-1-a-and-b-are-positive-real-numbers-Then-prove-that-a-n-b-n-a-b-a-n-1-b-n-1-2-




Question Number 175815 by Shrinava last updated on 07/Sep/22
If   n≥1         a and b are positive real numbers  Then prove that:  ((a^n   +  b^n )/(a  +  b))  ≥  ((a^(n−1)   +  b^(n−1) )/2)
Ifn1aandbarepositiverealnumbersThenprovethat:a\boldsymboln+b\boldsymbolna+ba\boldsymboln1+b\boldsymboln12
Answered by mahdipoor last updated on 07/Sep/22
⇔ 2a^n +2b^n ≥a^n +b^n +ab^(n−1) +ba^(n−1)   ⇔ a^n +b^n ≥ab^(n−1) +ba^(n−1)    ⇔a^(n−1) (a−b)≥b^(n−1) (a−b)  ⇔ { ((⇔^(a−b≥0)   a^(n−1) ≥b^(n−1)  ⇔ a≥b)),((⇔^(a−b≤0)   a^(n−1) ≤b^(n−1)  ⇔ a≤b)) :}
2an+2bnan+bn+abn1+ban1an+bnabn1+ban1an1(ab)bn1(ab){ab0an1bn1abab0an1bn1ab
Answered by Cesar1994 last updated on 07/Sep/22
  (a+b)(a^(n−1) +b^(n−1) )=a^n +b^n +ab^(n−1) +a^(n−1) b ...(1)  we proof that a^n +b^n ≥ab^(n−1) +a^(n−1) b...(2)  a^n −a^(n−1) b+b^n −ab^(n−1) =a^(n−1) (a−b)+b^(n−1) (b−a)                                                   =(a^(n−1) −b^(n−1) )(a−b)  without loss of generality, if a≥b>0  ⇒ a^n −a^(n−1) b+b^n −ab^(n−1) =(a^(n−1) −b^(n−1) )(a−b)≥0  ⇒(a+b)(a^(n−1) +b^(n−1) )≤2(a^n +b^n ), using 1 and 2  ⇒((a^(n−1) +b^(n−1) )/2)≤((a^n +b^n )/(a+b))   ■
(a+b)(an1+bn1)=an+bn+abn1+an1b(1)weproofthatan+bnabn1+an1b(2)anan1b+bnabn1=an1(ab)+bn1(ba)=(an1bn1)(ab)withoutlossofgenerality,ifab>0anan1b+bnabn1=(an1bn1)(ab)0(a+b)(an1+bn1)2(an+bn),using1and2an1+bn12an+bna+b◼

Leave a Reply

Your email address will not be published. Required fields are marked *