Menu Close

If-n-1-k-2-k-3-1-k-3-1-n-Solve-for-complex-numbees-z-4-3z-3-z-2-3z-1-0-




Question Number 188224 by Shrinava last updated on 26/Feb/23
If   Ω = Σ_(n=1) ^∞  (Π_(k=2) ^∞  ((k^3  − 1)/(k^3  + 1)))^n   Solve for complex numbees:  z^4  + 3z^3  + Ωz^2  + 3z + 1 = 0
IfΩ=n=1(k=2k31k3+1)nSolveforcomplexnumbees:z4+3z3+Ωz2+3z+1=0
Answered by aleks041103 last updated on 27/Feb/23
((k^3 −1)/(k^3 +1))=(((k−1)(k^2 +k+1))/((k+1)(k^2 −k+1)))  Π_(k=2) ^m ((k^3 −1)/(k^3 +1))=Π_(k=2) ^m ((k−1)/(k+1))Π_(k=2) ^m ((k^2 +k+1)/(k^2 −k+1))  Π_(k=2) ^m ((k^2 +k+1)/(k^2 −k+1)) = ((Π_(k=2) ^m k^2 +k+1)/(Π_(k=2) ^m k^2 −k+1)) =  =((Π_(k=2) ^m k^2 +k+1)/(Π_(k=2) ^m (k−1)^2 +(k−1)+1))=  =((Π_(k=2) ^m k^2 +k+1)/(Π_(k=1) ^(m−1) k^2 +k+1))=((m^2 +m+1)/3)  Π_(k=2) ^m ((k−1)/(k+1))=Π_(k=2) ^m ((k−1)/k)Π_(k=2) ^m (k/(k+1))=  =(1/m) (2/(m+1))=(2/(m(m+1)))  Π_(k=2) ^m ((k^3 −1)/(k^3 +1))=((2(m^2 +m+1))/(3m(m+1)))  ⇒Π_(k=2) ^∞ ((k^3 −1)/(k^3 +1))=lim_(m→∞) ((2(m^2 +m+1))/(3m(m+1)))=(2/3)  ⇒Ω=Σ_(n=1) ^∞ ((2/3))^n =(2/3)Σ_(n=0) ^∞ ((2/3))^n =  =(2/3) (1/(1−(2/3)))=2  z^4 +3z^3 +Ωz^2 +3z+1=0  z^4 +3z^3 +2z^2 +3z+1=0  z=0⇒not sol.  z^2 +3z+2+3(1/z)+(1/z^2 )=0  w=z+(1/z)⇒w^2 =2+z^2 +(1/z^2 )⇒z^2 +(1/z^2 )=w^2 −2  w^2 −2+3w+2=0  ⇒w^2 +3w=0⇒w=0;−3  ⇒z+(1/z)=0⇒z^2 +1=0⇒z_(1,2) =±i  z+(1/z)=−3⇒z^2 +3z+1=0⇒z_(3,4) =((−3±(√5))/2)  ⇒z∈{i,−i,(((√5)−3)/2),−((3+(√5))/2)} ; Ω=2
k31k3+1=(k1)(k2+k+1)(k+1)(k2k+1)mk=2k31k3+1=mk=2k1k+1mk=2k2+k+1k2k+1mk=2k2+k+1k2k+1=mk=2k2+k+1mk=2k2k+1==mk=2k2+k+1mk=2(k1)2+(k1)+1==mk=2k2+k+1m1k=1k2+k+1=m2+m+13mk=2k1k+1=mk=2k1kmk=2kk+1==1m2m+1=2m(m+1)mk=2k31k3+1=2(m2+m+1)3m(m+1)k=2k31k3+1=limm2(m2+m+1)3m(m+1)=23Ω=n=1(23)n=23n=0(23)n==231123=2z4+3z3+Ωz2+3z+1=0z4+3z3+2z2+3z+1=0z=0notsol.z2+3z+2+31z+1z2=0w=z+1zw2=2+z2+1z2z2+1z2=w22w22+3w+2=0w2+3w=0w=0;3z+1z=0z2+1=0z1,2=±iz+1z=3z2+3z+1=0z3,4=3±52z{i,i,532,3+52};Ω=2
Commented by Shrinava last updated on 28/Feb/23
perfect dear professor thank you
perfectdearprofessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *