Question Number 150289 by mathdanisur last updated on 10/Aug/21
$$\mathrm{If}\:\:\:_{\boldsymbol{\mathrm{n}}} \mathrm{C}_{\mathrm{3}} \:−\:_{\boldsymbol{\mathrm{n}}} \mathrm{C}_{\mathrm{2}} \:=\:\mathrm{14} \\ $$$$\mathrm{Find}\:\:\:_{\boldsymbol{\mathrm{n}}} \mathrm{P}_{\mathrm{2}} \:=\:? \\ $$
Answered by Ar Brandon last updated on 12/Aug/21
$$\overset{{n}} {\:}\mathrm{C}_{\mathrm{3}} −\overset{{n}} {\:}\mathrm{C}_{\mathrm{2}} =\mathrm{14} \\ $$$$\frac{{n}!}{\left({n}−\mathrm{3}\right)!\mathrm{3}!}−\frac{{n}!}{\left({n}−\mathrm{2}\right)!\mathrm{2}!}=\mathrm{14} \\ $$$$\frac{{n}!\left({n}−\mathrm{2}−\mathrm{3}\right)}{\left({n}−\mathrm{2}\right)!\mathrm{3}!}=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{5}\right)}{\mathrm{3}!}=\mathrm{14} \\ $$$${n}^{\mathrm{3}} −\mathrm{6}{n}^{\mathrm{2}} +\mathrm{5}{n}−\mathrm{84}=\mathrm{0},\:{n}=\mathrm{7} \\ $$$$\overset{\mathrm{7}} {\:}\mathrm{P}_{\mathrm{2}} =\frac{\mathrm{7}!}{\mathrm{5}!}=\mathrm{42} \\ $$
Commented by mathdanisur last updated on 10/Aug/21
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{Thank}\:\mathrm{You} \\ $$
Commented by mathdanisur last updated on 11/Aug/21
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{n}=\mathrm{5}\:\:\mathrm{or}\:\:\mathrm{n}=\mathrm{7}\:.? \\ $$
Commented by Ar Brandon last updated on 12/Aug/21
$$\mathrm{Thanks}.\:\mathrm{Edited}\:! \\ $$