Menu Close

If-n-is-a-positive-integer-prove-that-2-n-n-1-2-1-3-5-2n-1-pi-Help-




Question Number 192791 by Mastermind last updated on 27/May/23
If n is a positive integer, prove that   2^n Γ(n+(1/2)) = 1.3.5...(2n−1)(√π).    Help!
Ifnisapositiveinteger,provethat2nΓ(n+12)=1.3.5(2n1)π.Help!
Answered by Mathspace last updated on 27/May/23
montrons que Γ(n+(1/2))=((1.3.5...(2n−1))/2^n )(√π)  par recurence sur n  n=1  Γ((3/2))=((√π)/2)  vraie car  Γ((3/2))=Γ(1+(1/2))=(1/2)Γ((1/2))=((√π)/2)  supposons la relation vraie pourn  on a Γ(n+1+(1/2))  =Γ(1+n+(1/2))=(n+(1/2))Γ(n+(1/2))  =(n+(1/2))×((1.3.5...(2n−1))/2^n )(√π)  =((1.3.5....(2n−1)(2n+1))/2^(n+1) )(√π)  la relation est vraie a lordre  n+1.
montronsqueΓ(n+12)=1.3.5(2n1)2nπparrecurencesurnn=1Γ(32)=π2vraiecarΓ(32)=Γ(1+12)=12Γ(12)=π2supposonslarelationvraiepournonaΓ(n+1+12)=Γ(1+n+12)=(n+12)Γ(n+12)=(n+12)×1.3.5(2n1)2nπ=1.3.5.(2n1)(2n+1)2n+1πlarelationestvraiealordren+1.
Commented by Mastermind last updated on 28/May/23
you mean it should be (2n+1) not (2n−1)?  besides pls use english
youmeanitshouldbe(2n+1)not(2n1)?besidesplsuseenglish

Leave a Reply

Your email address will not be published. Required fields are marked *