Menu Close

If-N-is-perfect-nth-power-prove-that-n-d-N-1-Where-d-N-denotes-number-of-divisors-of-N-Also-show-by-an-example-that-its-vice-versa-is-not-necessarily-correct-




Question Number 27816 by Rasheed.Sindhi last updated on 15/Jan/18
If N is perfect nth power, prove that         n ∣ (d(N)−1)   [Where d(N) denotes number  of divisors of N]  Also show by an example that its  vice versa is not necessarily correct.
IfNisperfectnthpower,provethatn(d(N)1)[Whered(N)denotesnumberofdivisorsofN]Alsoshowbyanexamplethatitsviceversaisnotnecessarilycorrect.
Commented by Rasheed.Sindhi last updated on 16/Jan/18
Generalization ofQ#27767
You can't use 'macro parameter character #' in math mode
Answered by mrW2 last updated on 15/Jan/18
N=a^n   a=Π_(i=1) ^k p_i ^e_i    N=a^n =Π_(i=1) ^k p^(ne_i )   d(N)=Π_(i=1) ^k (ne_i +1)=(ne_1 +1)Π_(i=2) ^k (ne_i +1)=ne_1 Π_(i=2) ^k (ne_i +1)+Π_(i=2) ^k (ne_i +1)  d(N) mod n=[Π_(i=1) ^k (ne_i +1)] mod n=[Π_(i=2) ^k (ne_i +1)] mod n=[Π_(i=3) ^k (ne_i +1)] mod n=...=(ne_k +1) mod n=1  ⇒n ∣ [d(N)−1]    let′s look at N=48=2^4 ×3^1   d(N)=5×2=10  d(N)−1=9 mod 3=0  but N is not a perfect 3rd power, since  there is no integer a with a^3 =48.
N=ana=ki=1pieiN=an=ki=1pneid(N)=ki=1(nei+1)=(ne1+1)ki=2(nei+1)=ne1ki=2(nei+1)+ki=2(nei+1)d(N)modn=[ki=1(nei+1)]modn=[ki=2(nei+1)]modn=[ki=3(nei+1)]modn==(nek+1)modn=1n[d(N)1]letslookatN=48=24×31d(N)=5×2=10d(N)1=9mod3=0butNisnotaperfect3rdpower,sincethereisnointegerawitha3=48.
Commented by Rasheed.Sindhi last updated on 16/Jan/18
e^x cellent Sir!
excellentSir!

Leave a Reply

Your email address will not be published. Required fields are marked *