Menu Close

if-n-tan-cos-2-m-tan-cos-2-then-show-that-2-tan-1-n-m-n-m-tan-




Question Number 18695 by Arnab Maiti last updated on 27/Jul/17
if  ((n tanθ)/(cos^2 (α−θ)))=((m tan(α−θ))/(cos^2 θ))  then show that  2θ=α−tan^(−1) (((n−m)/(n+m))tanα)
$$\mathrm{if}\:\:\frac{\mathrm{n}\:\mathrm{tan}\theta}{\mathrm{cos}^{\mathrm{2}} \left(\alpha−\theta\right)}=\frac{\mathrm{m}\:\mathrm{tan}\left(\alpha−\theta\right)}{\mathrm{cos}^{\mathrm{2}} \theta} \\ $$$$\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{2}\theta=\alpha−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{n}−\mathrm{m}}{\mathrm{n}+\mathrm{m}}\mathrm{tan}\alpha\right) \\ $$
Answered by Tinkutara last updated on 28/Jul/17
n sin θ cos θ = m sin (α − θ) cos (α − θ)  (n/m) = ((sin (α − θ) cos (α − θ))/(sin θ cos θ)) = ((sin 2(α − θ))/(sin 2θ))  ((n − m)/(n + m)) = ((2 cos α sin (α − 2θ))/(2 sin α cos (α − 2θ)))  ((n − m)/(n + m)) tan α = tan (α − 2θ)  α = 2θ + tan^(−1) (((n − m)/(n + m)) tan α)
$${n}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:=\:{m}\:\mathrm{sin}\:\left(\alpha\:−\:\theta\right)\:\mathrm{cos}\:\left(\alpha\:−\:\theta\right) \\ $$$$\frac{{n}}{{m}}\:=\:\frac{\mathrm{sin}\:\left(\alpha\:−\:\theta\right)\:\mathrm{cos}\:\left(\alpha\:−\:\theta\right)}{\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}\:=\:\frac{\mathrm{sin}\:\mathrm{2}\left(\alpha\:−\:\theta\right)}{\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$\frac{{n}\:−\:{m}}{{n}\:+\:{m}}\:=\:\frac{\mathrm{2}\:\mathrm{cos}\:\alpha\:\mathrm{sin}\:\left(\alpha\:−\:\mathrm{2}\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\alpha\:\mathrm{cos}\:\left(\alpha\:−\:\mathrm{2}\theta\right)} \\ $$$$\frac{{n}\:−\:{m}}{{n}\:+\:{m}}\:\mathrm{tan}\:\alpha\:=\:\mathrm{tan}\:\left(\alpha\:−\:\mathrm{2}\theta\right) \\ $$$$\alpha\:=\:\mathrm{2}\theta\:+\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{n}\:−\:{m}}{{n}\:+\:{m}}\:\mathrm{tan}\:\alpha\right) \\ $$
Commented by Arnab Maiti last updated on 28/Jul/17
Thank u very much. I really  appriciate you sir!!
$$\mathrm{Thank}\:\mathrm{u}\:\mathrm{very}\:\mathrm{much}.\:\mathrm{I}\:\mathrm{really} \\ $$$$\mathrm{appriciate}\:\mathrm{you}\:\mathrm{sir}!! \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *