Menu Close

If-n-Z-show-that-k-1-n-ln-2-1-1-k-lt-1-




Question Number 107481 by ZiYangLee last updated on 11/Aug/20
If n∈Z^+ , show that Σ_(k=1) ^n ln^2 (1+(1/k))<1
IfnZ+,showthatnk=1ln2(1+1k)<1
Answered by 1549442205PVT last updated on 11/Aug/20
Σ_(k=1) ^n ln^2 (1+(1/k))<1  We have ln(1+x)<x ∀x>0.Indeed,  Consider the function f(x)=x−ln(1+x)  f ′(x)=1−(1/(1+x))=(x/(1+x))>0∀x>0  ⇒f(x) is increase on (0;+∞)  Hence f(x)≥f(0)=0 ∀x∈[0;+∞)  ⇔x>ln(1+x)∀x(0;+∞)(q.e.d)  Hence ,ln(1+(1/k))<(1/k)⇒ln^2 (1+(1/k))<(1/k^2 )  (1/((k+1)^2 ))<(1/(k(k+1)))=(1/k)−(1/(k+1)).Therefore  Σ_(k=1) ^n ln^2 (1+(1/k))=ln^2 (2)+ln^2 ((3/2))+ln^2 ((4/3))  +ln^2 ((5/4))+ln^2 ((6/5))...+ln^2 (1+(1/(10)))  +(1/(11^2 ))+(1/(12^2 ))+...+(1/n^2 )  <ln^2 (2)+ln^2 ((3/2))+ln^2 ((4/3))+ln^2 ((5/4))+ln^2 ((6/5))...+ln^2 (1+(1/(10)))  +(1/(10))−(1/(11))+(1/(11))−(1/(12))+...+(1/(n−1))−(1/n)  =0.886300+(1/(10))−(1/n)<0.986300<1(q.e.d)
nk=1ln2(1+1k)<1Wehaveln(1+x)<xx>0.Indeed,Considerthefunctionf(x)=xln(1+x)f(x)=111+x=x1+x>0x>0f(x)isincreaseon(0;+)Hencef(x)f(0)=0x[0;+)x>ln(1+x)x(0;+)(q.e.d)Hence,ln(1+1k)<1kln2(1+1k)<1k21(k+1)2<1k(k+1)=1k1k+1.Thereforenk=1ln2(1+1k)=ln2(2)+ln2(32)+ln2(43)+ln2(54)+ln2(65)+ln2(1+110)+1112+1122++1n2<ln2(2)+ln2(32)+ln2(43)+ln2(54)+ln2(65)+ln2(1+110)+110111+111112++1n11n=0.886300+1101n<0.986300<1(q.e.d)

Leave a Reply

Your email address will not be published. Required fields are marked *