Menu Close

If-one-line-of-the-equation-ax-3-bx-2-y-cxy-2-dy-3-0-bisects-the-angle-between-the-the-other-two-then-prove-3a-c-2-bc-2cd-3ad-b-3d-2-bc-2ab-3ad-




Question Number 28303 by ajfour last updated on 24/Jan/18
If one line of the equation :  ax^3 +bx^2 y+cxy^2 +dy^3 =0  bisects the angle between the  the other two then prove  (3a+c)^2 (bc+2cd−3ad)=               (b+3d)^2 (bc+2ab−3ad) .
$${If}\:{one}\:{line}\:{of}\:{the}\:{equation}\:: \\ $$$$\boldsymbol{{ax}}^{\mathrm{3}} +\boldsymbol{{bx}}^{\mathrm{2}} \boldsymbol{{y}}+\boldsymbol{{cxy}}^{\mathrm{2}} +\boldsymbol{{dy}}^{\mathrm{3}} =\mathrm{0} \\ $$$${bisects}\:{the}\:{angle}\:{between}\:{the} \\ $$$${the}\:{other}\:{two}\:{then}\:{prove} \\ $$$$\left(\mathrm{3}{a}+{c}\right)^{\mathrm{2}} \left({bc}+\mathrm{2}{cd}−\mathrm{3}{ad}\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}+\mathrm{3}{d}\right)^{\mathrm{2}} \left({bc}+\mathrm{2}{ab}−\mathrm{3}{ad}\right)\:. \\ $$
Answered by ajfour last updated on 24/Jan/18
let the lines be  y=m_1 x, y=m_0 x, and y=m_2 x  θ_0 =(((θ_1 +θ_2 )/2))  ⇒  ((2m_0 )/(1−m_0 ^2 ))=((m_1 +m_2 )/(1−m_1 m_2 ))    ...(i)  m_1 m_2 m_0 =−a/d     ....(ii)  (m_1 +m_2 )m_0 +m_1 m_2 =b/d   ...(iii)  m_1 +m_2 +m_0 =−c/d     ....(iv)  using (ii) and (iv) in (i) and (iii)  to obtain two equations in m_0 :  ((2m_0 )/(1−m_0 ^2 ))=−(((m_0 +(c/d)))/((1+(a/(m_0 d)))))     ⇒ (2/(1−m_0 ^2 ))=− ((c+m_0 d)/(a+m_0 d))    .....(I)  m_0 =−((((b/d)+(a/(m_0 d))))/((m_0 +(c/d))))       ⇒    m_0 ^2 =− ((a+m_0 b)/(c+m_0 d))     .....(II)  (I)×(II)  gives  ((2m_0 ^2 )/(1−m_0 ^2 ))=((a+m_0 b)/(a+m_0 d))  adding 2 on bothsides  (2/(1−m_0 ^2 ))=((3a+m_0 (b+2d))/(a+m_0 d))    .....(A)  equating (I) with (A):  (2/(1−m_0 ^2 ))=((3a+m_0 (b+2d))/(a+m_0 d))=−((c+m_0 d)/(a+m_0 d))  hence  3a+m_0 (b+2d)=−(c+m_0 d)  m_0 =− ((3a+c)/(b+3d))  substituting in (II):  (((3a+c)/(b+3d)))^2 =− ((a−(((3a+c)/(b+3d)))b)/(c−(((3a+c)/(b+3d)))d))  or   (((3a+c)/(b+3d)))^2 =− ((3ad−2ab−bc)/(bc+2cd−3ad))   ⇒  (((3a+c)/(b+3d)))^2 = ((bc+2ab−3ad)/(bc+2cd−3ad))  .
$${let}\:{the}\:{lines}\:{be} \\ $$$${y}={m}_{\mathrm{1}} {x},\:{y}={m}_{\mathrm{0}} {x},\:{and}\:{y}={m}_{\mathrm{2}} {x} \\ $$$$\theta_{\mathrm{0}} =\left(\frac{\theta_{\mathrm{1}} +\theta_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}{m}_{\mathrm{0}} }{\mathrm{1}−{m}_{\mathrm{0}} ^{\mathrm{2}} }=\frac{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }{\mathrm{1}−{m}_{\mathrm{1}} {m}_{\mathrm{2}} }\:\:\:\:…\left({i}\right) \\ $$$${m}_{\mathrm{1}} {m}_{\mathrm{2}} {m}_{\mathrm{0}} =−{a}/{d}\:\:\:\:\:….\left({ii}\right) \\ $$$$\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){m}_{\mathrm{0}} +{m}_{\mathrm{1}} {m}_{\mathrm{2}} ={b}/{d}\:\:\:…\left({iii}\right) \\ $$$${m}_{\mathrm{1}} +{m}_{\mathrm{2}} +{m}_{\mathrm{0}} =−{c}/{d}\:\:\:\:\:….\left({iv}\right) \\ $$$${using}\:\left({ii}\right)\:{and}\:\left({iv}\right)\:{in}\:\left({i}\right)\:{and}\:\left({iii}\right) \\ $$$${to}\:{obtain}\:{two}\:{equations}\:{in}\:{m}_{\mathrm{0}} : \\ $$$$\frac{\mathrm{2}{m}_{\mathrm{0}} }{\mathrm{1}−{m}_{\mathrm{0}} ^{\mathrm{2}} }=−\frac{\left({m}_{\mathrm{0}} +\frac{{c}}{{d}}\right)}{\left(\mathrm{1}+\frac{{a}}{{m}_{\mathrm{0}} {d}}\right)}\:\:\: \\ $$$$\Rightarrow\:\frac{\mathrm{2}}{\mathrm{1}−{m}_{\mathrm{0}} ^{\mathrm{2}} }=−\:\frac{{c}+{m}_{\mathrm{0}} {d}}{{a}+{m}_{\mathrm{0}} {d}}\:\:\:\:…..\left({I}\right) \\ $$$${m}_{\mathrm{0}} =−\frac{\left(\frac{{b}}{{d}}+\frac{{a}}{{m}_{\mathrm{0}} {d}}\right)}{\left({m}_{\mathrm{0}} +\frac{{c}}{{d}}\right)}\:\:\:\:\: \\ $$$$\Rightarrow\:\:\:\:{m}_{\mathrm{0}} ^{\mathrm{2}} =−\:\frac{{a}+{m}_{\mathrm{0}} {b}}{{c}+{m}_{\mathrm{0}} {d}}\:\:\:\:\:…..\left({II}\right) \\ $$$$\left({I}\right)×\left({II}\right)\:\:{gives} \\ $$$$\frac{\mathrm{2}{m}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{1}−{m}_{\mathrm{0}} ^{\mathrm{2}} }=\frac{{a}+{m}_{\mathrm{0}} {b}}{{a}+{m}_{\mathrm{0}} {d}} \\ $$$${adding}\:\mathrm{2}\:{on}\:{bothsides} \\ $$$$\frac{\mathrm{2}}{\mathrm{1}−{m}_{\mathrm{0}} ^{\mathrm{2}} }=\frac{\mathrm{3}{a}+{m}_{\mathrm{0}} \left({b}+\mathrm{2}{d}\right)}{{a}+{m}_{\mathrm{0}} {d}}\:\:\:\:…..\left({A}\right) \\ $$$${equating}\:\left({I}\right)\:{with}\:\left({A}\right): \\ $$$$\frac{\mathrm{2}}{\mathrm{1}−\boldsymbol{{m}}_{\mathrm{0}} ^{\mathrm{2}} }=\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{m}}_{\mathrm{0}} \left(\boldsymbol{{b}}+\mathrm{2}\boldsymbol{{d}}\right)}{\boldsymbol{{a}}+\boldsymbol{{m}}_{\mathrm{0}} \boldsymbol{{d}}}=−\frac{\boldsymbol{{c}}+\boldsymbol{{m}}_{\mathrm{0}} \boldsymbol{{d}}}{\boldsymbol{{a}}+\boldsymbol{{m}}_{\mathrm{0}} \boldsymbol{{d}}} \\ $$$$\boldsymbol{{hence}} \\ $$$$\mathrm{3}{a}+{m}_{\mathrm{0}} \left({b}+\mathrm{2}{d}\right)=−\left({c}+{m}_{\mathrm{0}} {d}\right) \\ $$$$\boldsymbol{{m}}_{\mathrm{0}} =−\:\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}} \\ $$$${substituting}\:{in}\:\left({II}\right): \\ $$$$\left(\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}}\right)^{\mathrm{2}} =−\:\frac{\boldsymbol{{a}}−\left(\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}}\right)\boldsymbol{{b}}}{\boldsymbol{{c}}−\left(\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}}\right)\boldsymbol{{d}}} \\ $$$$\boldsymbol{{or}}\: \\ $$$$\left(\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}}\right)^{\mathrm{2}} =−\:\frac{\mathrm{3}\boldsymbol{{ad}}−\mathrm{2}\boldsymbol{{ab}}−\boldsymbol{{bc}}}{\boldsymbol{{bc}}+\mathrm{2}\boldsymbol{{cd}}−\mathrm{3}\boldsymbol{{ad}}}\: \\ $$$$\Rightarrow\:\:\left(\frac{\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}}{\boldsymbol{{b}}+\mathrm{3}\boldsymbol{{d}}}\right)^{\mathrm{2}} =\:\frac{\boldsymbol{{bc}}+\mathrm{2}\boldsymbol{{ab}}−\mathrm{3}\boldsymbol{{ad}}}{\boldsymbol{{bc}}+\mathrm{2}\boldsymbol{{cd}}−\mathrm{3}\boldsymbol{{ad}}}\:\:. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *