If-one-line-of-the-equation-ax-3-bx-2-y-cxy-2-dy-3-0-bisects-the-angle-between-the-the-other-two-then-prove-3a-c-2-bc-2cd-3ad-b-3d-2-bc-2ab-3ad- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 28303 by ajfour last updated on 24/Jan/18 Ifonelineoftheequation:ax3+bx2y+cxy2+dy3=0bisectstheanglebetweenthetheothertwothenprove(3a+c)2(bc+2cd−3ad)=(b+3d)2(bc+2ab−3ad). Answered by ajfour last updated on 24/Jan/18 letthelinesbey=m1x,y=m0x,andy=m2xθ0=(θ1+θ22)⇒2m01−m02=m1+m21−m1m2…(i)m1m2m0=−a/d….(ii)(m1+m2)m0+m1m2=b/d…(iii)m1+m2+m0=−c/d….(iv)using(ii)and(iv)in(i)and(iii)toobtaintwoequationsinm0:2m01−m02=−(m0+cd)(1+am0d)⇒21−m02=−c+m0da+m0d…..(I)m0=−(bd+am0d)(m0+cd)⇒m02=−a+m0bc+m0d…..(II)(I)×(II)gives2m021−m02=a+m0ba+m0dadding2onbothsides21−m02=3a+m0(b+2d)a+m0d…..(A)equating(I)with(A):21−m02=3a+m0(b+2d)a+m0d=−c+m0da+m0dhence3a+m0(b+2d)=−(c+m0d)m0=−3a+cb+3dsubstitutingin(II):(3a+cb+3d)2=−a−(3a+cb+3d)bc−(3a+cb+3d)dor(3a+cb+3d)2=−3ad−2ab−bcbc+2cd−3ad⇒(3a+cb+3d)2=bc+2ab−3adbc+2cd−3ad. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-28302Next Next post: if-y-sin-1-x-2-cos-1-x-2-find-dy-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.