Menu Close

If-one-line-of-the-equation-ax-3-bx-2-y-cxy-2-dy-3-0-bisects-the-angle-between-the-the-other-two-then-prove-3a-c-2-bc-2cd-3ad-b-3d-2-bc-2ab-3ad-




Question Number 28303 by ajfour last updated on 24/Jan/18
If one line of the equation :  ax^3 +bx^2 y+cxy^2 +dy^3 =0  bisects the angle between the  the other two then prove  (3a+c)^2 (bc+2cd−3ad)=               (b+3d)^2 (bc+2ab−3ad) .
Ifonelineoftheequation:ax3+bx2y+cxy2+dy3=0bisectstheanglebetweenthetheothertwothenprove(3a+c)2(bc+2cd3ad)=(b+3d)2(bc+2ab3ad).
Answered by ajfour last updated on 24/Jan/18
let the lines be  y=m_1 x, y=m_0 x, and y=m_2 x  θ_0 =(((θ_1 +θ_2 )/2))  ⇒  ((2m_0 )/(1−m_0 ^2 ))=((m_1 +m_2 )/(1−m_1 m_2 ))    ...(i)  m_1 m_2 m_0 =−a/d     ....(ii)  (m_1 +m_2 )m_0 +m_1 m_2 =b/d   ...(iii)  m_1 +m_2 +m_0 =−c/d     ....(iv)  using (ii) and (iv) in (i) and (iii)  to obtain two equations in m_0 :  ((2m_0 )/(1−m_0 ^2 ))=−(((m_0 +(c/d)))/((1+(a/(m_0 d)))))     ⇒ (2/(1−m_0 ^2 ))=− ((c+m_0 d)/(a+m_0 d))    .....(I)  m_0 =−((((b/d)+(a/(m_0 d))))/((m_0 +(c/d))))       ⇒    m_0 ^2 =− ((a+m_0 b)/(c+m_0 d))     .....(II)  (I)×(II)  gives  ((2m_0 ^2 )/(1−m_0 ^2 ))=((a+m_0 b)/(a+m_0 d))  adding 2 on bothsides  (2/(1−m_0 ^2 ))=((3a+m_0 (b+2d))/(a+m_0 d))    .....(A)  equating (I) with (A):  (2/(1−m_0 ^2 ))=((3a+m_0 (b+2d))/(a+m_0 d))=−((c+m_0 d)/(a+m_0 d))  hence  3a+m_0 (b+2d)=−(c+m_0 d)  m_0 =− ((3a+c)/(b+3d))  substituting in (II):  (((3a+c)/(b+3d)))^2 =− ((a−(((3a+c)/(b+3d)))b)/(c−(((3a+c)/(b+3d)))d))  or   (((3a+c)/(b+3d)))^2 =− ((3ad−2ab−bc)/(bc+2cd−3ad))   ⇒  (((3a+c)/(b+3d)))^2 = ((bc+2ab−3ad)/(bc+2cd−3ad))  .
letthelinesbey=m1x,y=m0x,andy=m2xθ0=(θ1+θ22)2m01m02=m1+m21m1m2(i)m1m2m0=a/d.(ii)(m1+m2)m0+m1m2=b/d(iii)m1+m2+m0=c/d.(iv)using(ii)and(iv)in(i)and(iii)toobtaintwoequationsinm0:2m01m02=(m0+cd)(1+am0d)21m02=c+m0da+m0d..(I)m0=(bd+am0d)(m0+cd)m02=a+m0bc+m0d..(II)(I)×(II)gives2m021m02=a+m0ba+m0dadding2onbothsides21m02=3a+m0(b+2d)a+m0d..(A)equating(I)with(A):21m02=3a+m0(b+2d)a+m0d=c+m0da+m0dhence3a+m0(b+2d)=(c+m0d)m0=3a+cb+3dsubstitutingin(II):(3a+cb+3d)2=a(3a+cb+3d)bc(3a+cb+3d)dor(3a+cb+3d)2=3ad2abbcbc+2cd3ad(3a+cb+3d)2=bc+2ab3adbc+2cd3ad.

Leave a Reply

Your email address will not be published. Required fields are marked *