Menu Close

If-one-vertex-of-the-triangle-having-maximum-area-that-can-be-inscribed-in-the-circle-z-i-5-is-3-3i-then-find-other-vertices-of-triangle-




Question Number 32184 by rahul 19 last updated on 21/Mar/18
If one vertex of the triangle having  maximum area that can be inscribed  in the circle ∣z−i∣=5 is 3−3i, then  find other vertices of triangle.
\boldsymbolIfonevertexofthetrianglehavingmaximumareathatcanbeinscribedinthecircle\boldsymbolz\boldsymboli∣=5is33\boldsymboli,thenfindotherverticesoftriangle.
Answered by MJS last updated on 21/Mar/18
the triangle with maximum area  is equilateral  the given circle has it′s center  at z=i, so we move everything  to: ∣z∣=5 and the vertex to  A′=3−4i=5e^(i(tan^(−1) (3/4)−(π/2)))   the other vertices are  B′=5e^(i(tan^(−1) (3/4)+(π/6))) =(2(√3)−(3/2))+(((3(√3))/2)+2)i  C′=5e^(i(tan^(−1) (3/4)−((7π)/6))) =(−2(√3)−(3/2))+(−((3(√3))/3)+2)i  now we move them back:  A=A′+i=3−3i  B=B′+i=(2(√3)−(3/2))+(((3(√3))/2)+3)i  C=C′+i=(−2(√3)−(3/2))+(−((3(√3))/2)+3)i
thetrianglewithmaximumareaisequilateralthegivencirclehasitscenteratz=i,sowemoveeverythingto:z∣=5andthevertextoA=34i=5ei(tan134π2)theotherverticesareB=5ei(tan134+π6)=(2332)+(332+2)iC=5ei(tan1347π6)=(2332)+(333+2)inowwemovethemback:A=A+i=33iB=B+i=(2332)+(332+3)iC=C+i=(2332)+(332+3)i
Commented by rahul 19 last updated on 21/Mar/18
thank u sir!
thankusir!thankusir!

Leave a Reply

Your email address will not be published. Required fields are marked *