Menu Close

If-outer-angle-in-n-polygone-is-18-find-n-




Question Number 175893 by blackmamba last updated on 08/Sep/22
 If outer angle in n−polygone is 18°   find n
$$\:{If}\:{outer}\:{angle}\:{in}\:{n}−{polygone}\:{is}\:\mathrm{18}° \\ $$$$\:{find}\:{n} \\ $$
Commented by Rasheed.Sindhi last updated on 09/Sep/22
n=20
$${n}=\mathrm{20} \\ $$
Commented by blackmamba last updated on 09/Sep/22
what the formula
$${what}\:{the}\:{formula} \\ $$
Commented by BaliramKumar last updated on 09/Sep/22
((360)/(18)) = 20
$$\frac{\mathrm{360}}{\mathrm{18}}\:=\:\mathrm{20} \\ $$
Answered by Rasheed.Sindhi last updated on 09/Sep/22
Central angle: 360/n  Angle between consecutive sides:  180−((360)/n)=((180n−360)/n)  outer  angle:  180−((180n−360)/n)    =((180n−180n+360)/n)=((360)/n)  ((360)/n)=18⇒n=((360)/(18))=20   determinant (((Outer angle=((360)/n)_(n=((360)/(Outer angle))^() ) )))
$${Central}\:{angle}:\:\mathrm{360}/{n} \\ $$$${Angle}\:{between}\:{consecutive}\:{sides}: \\ $$$$\mathrm{180}−\frac{\mathrm{360}}{{n}}=\frac{\mathrm{180}{n}−\mathrm{360}}{{n}} \\ $$$${outer}\:\:{angle}:\:\:\mathrm{180}−\frac{\mathrm{180}{n}−\mathrm{360}}{{n}} \\ $$$$\:\:=\frac{\mathrm{180}{n}−\mathrm{180}{n}+\mathrm{360}}{{n}}=\frac{\mathrm{360}}{{n}} \\ $$$$\frac{\mathrm{360}}{{n}}=\mathrm{18}\Rightarrow{n}=\frac{\mathrm{360}}{\mathrm{18}}=\mathrm{20} \\ $$$$\begin{array}{|c|}{\underset{\overset{} {\mathrm{n}=\frac{\mathrm{360}}{\mathrm{Outer}\:\mathrm{angle}}}} {\mathrm{Outer}\:\mathrm{angle}=\frac{\mathrm{360}}{\mathrm{n}}}}\\\hline\end{array} \\ $$
Commented by peter frank last updated on 09/Sep/22
thanks
$$\mathrm{thanks} \\ $$
Commented by Tawa11 last updated on 15/Sep/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *