Menu Close

If-p-and-q-are-the-length-of-perpendicular-from-the-origin-to-the-lines-xcos-ysin-kcos2-and-xsec-ycosec-k-respectively-prove-that-p-2-4q-2-k-2-




Question Number 51822 by peter frank last updated on 30/Dec/18
If  p and q  are the length  of perpendicular from  the origin to the lines  xcos θ−ysin  θ=kcos2θ  and xsec θ+ycosec θ=k  respectively  prove that  p^2 +4q^2 =k^2
$${If}\:\:{p}\:{and}\:{q}\:\:{are}\:{the}\:{length} \\ $$$${of}\:{perpendicular}\:{from} \\ $$$${the}\:{origin}\:{to}\:{the}\:{lines} \\ $$$${x}\mathrm{cos}\:\theta−{y}\mathrm{sin}\:\:\theta={kcos}\mathrm{2}\theta \\ $$$${and}\:{x}\mathrm{sec}\:\theta+{y}\mathrm{cosec}\:\theta={k} \\ $$$${respectively} \\ $$$${prove}\:{that} \\ $$$${p}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{2}} ={k}^{\mathrm{2}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
p=∣((0+0−k)/( (√(cos^2 θ+sin^2 θ))))∣=k  q=∣((−k)/( (√(sec^2 θ+cosec^2 θ))))∣=(k/( (√((1/(cos^2 θ))+(1/(sin^2 θ))))))=ksinθcosθ  pls check the question...
$${p}=\mid\frac{\mathrm{0}+\mathrm{0}−{k}}{\:\sqrt{{cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta}}\mid={k} \\ $$$${q}=\mid\frac{−{k}}{\:\sqrt{{sec}^{\mathrm{2}} \theta+{cosec}^{\mathrm{2}} \theta}}\mid=\frac{{k}}{\:\sqrt{\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}+\frac{\mathrm{1}}{{sin}^{\mathrm{2}} \theta}}}={ksin}\theta{cos}\theta \\ $$$${pls}\:{check}\:{the}\:{question}… \\ $$
Commented by peter frank last updated on 30/Dec/18
now fixed
$${now}\:{fixed} \\ $$
Commented by peter frank last updated on 30/Dec/18
p^2 =k^2 cos^2  2θ....(i)  q^2 =(1/4)k^2 sin^2 2θ....(ii)  (i)+(ii)  p^2 +4q^2 =k^2   thank you sir for your method .....finaly i reach  destination
$${p}^{\mathrm{2}} ={k}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\mathrm{2}\theta….\left({i}\right) \\ $$$${q}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}{k}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{2}\theta….\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right) \\ $$$${p}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{2}} ={k}^{\mathrm{2}} \\ $$$${thank}\:{you}\:{sir}\:{for}\:{your}\:{method}\:…..{finaly}\:{i}\:{reach} \\ $$$${destination} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *