Menu Close

If-p-is-one-of-roots-from-x-2-2x-6-0-then-p-4-16p-is-equal-to-




Question Number 21733 by Joel577 last updated on 02/Oct/17
If p is one of  roots from x^2  − 2x + 6 = 0  then p^4  + 16p is equal to ...
$$\mathrm{If}\:{p}\:\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\:\mathrm{roots}\:\mathrm{from}\:{x}^{\mathrm{2}} \:−\:\mathrm{2}{x}\:+\:\mathrm{6}\:=\:\mathrm{0} \\ $$$$\mathrm{then}\:{p}^{\mathrm{4}} \:+\:\mathrm{16}{p}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:… \\ $$
Answered by mrW1 last updated on 02/Oct/17
p^2 −2p+6=0  p^2 =2p−6  p^4 =4p^2 −24p+36  p^4 +16p=4p^2 −24p+36+16p  =4p^2 −8p+36  =4(p^2 −2p+6)+12  =4×0+12  =12
$$\mathrm{p}^{\mathrm{2}} −\mathrm{2p}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{p}^{\mathrm{2}} =\mathrm{2p}−\mathrm{6} \\ $$$$\mathrm{p}^{\mathrm{4}} =\mathrm{4p}^{\mathrm{2}} −\mathrm{24p}+\mathrm{36} \\ $$$$\mathrm{p}^{\mathrm{4}} +\mathrm{16p}=\mathrm{4p}^{\mathrm{2}} −\mathrm{24p}+\mathrm{36}+\mathrm{16p} \\ $$$$=\mathrm{4p}^{\mathrm{2}} −\mathrm{8p}+\mathrm{36} \\ $$$$=\mathrm{4}\left(\mathrm{p}^{\mathrm{2}} −\mathrm{2p}+\mathrm{6}\right)+\mathrm{12} \\ $$$$=\mathrm{4}×\mathrm{0}+\mathrm{12} \\ $$$$=\mathrm{12} \\ $$
Commented by Joel577 last updated on 02/Oct/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *