Menu Close

If-p-is-the-measure-of-per-pendicular-segment-from-the-origin-on-the-line-whose-intercept-are-a-and-b-show-that-1-a-2-1-b-2-1-p-2-




Question Number 54364 by peter frank last updated on 02/Feb/19
If  p is the measure of per  pendicular segment from  the origin on the line  whose intercept are  a  and    b.show that  (1/a^2 )+(1/b^2 )=(1/p^2 )
$$\mathrm{If}\:\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\mathrm{per} \\ $$$$\mathrm{pendicular}\:\mathrm{segment}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{whose}\:\mathrm{intercept}\:\mathrm{are} \\ $$$$\mathrm{a}\:\:\mathrm{and}\:\:\:\:\mathrm{b}.\mathrm{show}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{p}^{\mathrm{2}} } \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
eqn st line  (x/a)+(y/b)=1  ∣(((0/a)+(0/b)−1)/( (√(((1/a))^2 +((1/b))^2 ))))∣=p  (1/((1/a^2 )+(1/b^2 )))=p^2   (1/a^2 )+(1/b^2 )=(1/p^2 )
$${eqn}\:{st}\:{line}\:\:\frac{{x}}{{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$$\mid\frac{\frac{\mathrm{0}}{{a}}+\frac{\mathrm{0}}{{b}}−\mathrm{1}}{\:\sqrt{\left(\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{b}}\right)^{\mathrm{2}} }}\mid={p} \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}={p}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }=\frac{\mathrm{1}}{{p}^{\mathrm{2}} } \\ $$
Commented by peter frank last updated on 03/Feb/19
thank you mr tanmay
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{tanmay} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *