Menu Close

If-P-n-cos-n-sin-n-0-pi-2-n-2-then-minimum-of-P-n-will-be-1-1-2-1-2-3-2-4-1-2-




Question Number 18402 by Tinkutara last updated on 20/Jul/17
If P_n  = cos^n  θ + sin^n  θ, θ ∈ [0, (π/2)], n ∈  (−∞, 2), then minimum of P_n  will be  (1) 1  (2) (1/2)  (3) (√2)  (4) (1/( (√2)))
IfPn=cosnθ+sinnθ,θ[0,π2],n(,2),thenminimumofPnwillbe(1)1(2)12(3)2(4)12
Answered by Tinkutara last updated on 28/Jul/17
(sin θ)^(−n)  ≥ ... ≥ (sin θ)^(−1)  ≥ sin θ ≥ sin^2  θ  (cos θ)^(−n)  ≥ ... ≥ (cos θ)^(−1)  ≥ cos θ ≥ cos^2  θ  (sin θ)^(−n)  + (cos θ)^(−n)  > sin^2  θ + cos^2  θ = 1  ∴ Minimum of P_n  = 1
(sinθ)n(sinθ)1sinθsin2θ(cosθ)n(cosθ)1cosθcos2θ(sinθ)n+(cosθ)n>sin2θ+cos2θ=1MinimumofPn=1

Leave a Reply

Your email address will not be published. Required fields are marked *